Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: a phase 2 trial.

Tytuł:
Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: a phase 2 trial.
Autorzy:
Fisher MJ; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Shih CS; Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.; Merck & Co., Inc., Kenilworth, NJ, USA.
Rhodes SD; Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
Armstrong AE; Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.; Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA.
Wolters PL; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
Dombi E; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
Zhang C; Department of Medical and Molecular Genomics, Indiana University, Indianapolis, IN, USA.
Angus SP; Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.; Department of Pharmacology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.; Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
Johnson GL; Department of Pharmacology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.
Packer RJ; Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Washington, DC, USA.
Allen JC; Department of Pediatrics, New York University School of Medicine, New York, NY, USA.
Ullrich NJ; Department of Neurology, Dana Farber/Boston Children's Hospital, Boston, MA, USA.
Goldman S; Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
Gutmann DH; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
Plotkin SR; Department of Neurology and Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA.
Rosser T; Division of Neurology, Children's Hospital of Los Angeles, Los Angeles, CA, USA.
Robertson KA; Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.
Widemann BC; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
Smith AE; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
Bessler WK; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
He Y; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
Park SJ; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
Mund JA; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
Jiang L; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
Bijangi-Vishehsaraei K; Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.
Robinson CT; Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA.
Cutter GR; Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA.
Korf BR; Department of Genetics, University of Alabama Birmingham, Birmingham, AL, USA.
Blakeley JO; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA. .
Clapp DW; Division of Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA. .; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA. .
Corporate Authors:
Neurofibromatosis Clinical Trials Consortium
Źródło:
Nature medicine [Nat Med] 2021 Jan; Vol. 27 (1), pp. 165-173. Date of Electronic Publication: 2021 Jan 13.
Typ publikacji:
Clinical Trial, Phase II; Journal Article; Multicenter Study; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, P.H.S.
Język:
English
Imprint Name(s):
Publication: New York Ny : Nature Publishing Company
Original Publication: New York, NY : Nature Pub. Co., [1995-
MeSH Terms:
Anilides/*therapeutic use
Neurofibroma, Plexiform/*drug therapy
Neurofibromatosis 1/*drug therapy
Pyridines/*therapeutic use
Adolescent ; Adult ; Anilides/adverse effects ; Anilides/pharmacokinetics ; Animals ; Disease Models, Animal ; Female ; Genes, Neurofibromatosis 1 ; Humans ; Male ; Mice ; Mice, Mutant Strains ; Neurofibroma, Plexiform/genetics ; Neurofibroma, Plexiform/pathology ; Neurofibromatosis 1/genetics ; Neurofibromatosis 1/pathology ; Pain Measurement ; Prospective Studies ; Protein Kinase Inhibitors/adverse effects ; Protein Kinase Inhibitors/pharmacokinetics ; Protein Kinase Inhibitors/therapeutic use ; Pyridines/adverse effects ; Pyridines/pharmacokinetics ; Quality of Life ; Receptor Protein-Tyrosine Kinases/antagonists & inhibitors ; Translational Research, Biomedical ; Young Adult
References:
PhRMA. A Decade of Innovation In Rare Diseases. http://phrma-docs.phrma.org/sites/default/files/pdf/PhRMA-Decade-of-Innovation-Rare-Diseases.pdf (2015).
Friedman, J. M. Epidemiology of neurofibromatosis type 1. Am. J. Med. Genet. 89, 1–6 (1999). (PMID: 1046943010.1002/(SICI)1096-8628(19990326)89:1<1::AID-AJMG3>3.0.CO;2-8)
Wallace, M. R. et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249, 181–186 (1990). (PMID: 213473410.1126/science.2134734)
Viskochil, D. et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62, 187–192 (1990). (PMID: 169472710.1016/0092-8674(90)90252-A)
Ballester, R. et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851–859 (1990). (PMID: 212137110.1016/0092-8674(90)90151-4)
Gutmann, D. H., Blakeley, J. O., Korf, B. R. & Packer, R. J. Optimizing biologically targeted clinical trials for neurofibromatosis. Expert Opin. Investig. Drugs 22, 443–462 (2013). (PMID: 23425047400999210.1517/13543784.2013.772979)
Maertens, O. et al. A collaborative model for accelerating the discovery and translation of cancer therapies. Cancer Res. 77, 5706–5711 (2017). (PMID: 28993414566816710.1158/0008-5472.CAN-17-1789)
Packer, R. J., Fisher, M. J., Cutter, G., Cole-Plourde, K. & Korf, B. R. Neurofibromatosis Cinical Trial Consortium. J. Child Neurol. 33, 82–91 (2018). (PMID: 2924609710.1177/0883073817739196)
Plotkin, S. R. et al. Achieving consensus for clinical trials: the REiNS International Collaboration. Neurology 81, S1–S5 (2013). (PMID: 24249801390833810.1212/01.wnl.0000435743.49414.b6)
Staser, K., Yang, F. C. & Clapp, D. W. Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu. Rev. Pathol. 7, 469–495 (2012). (PMID: 2207755310.1146/annurev-pathol-011811-132441)
Ferner, R. E. & Gutmann, D. H. Neurofibromatosis type 1 (NF1): diagnosis and management. Handb. Clin. Neurol. 115, 939–955 (2013). (PMID: 2393182310.1016/B978-0-444-52902-2.00053-9)
Mautner, V. F. et al. Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro. Oncol. 10, 593–598 (2008). (PMID: 18559970266623310.1215/15228517-2008-011)
Gross, A. M. et al. Association of plexiform neurofibroma volume changes and development of clinical morbidities in neurofibromatosis 1. Neuro. Oncol. 20, 1643–1651 (2018). (PMID: 29718344623120210.1093/neuonc/noy067)
Evans, D. G. et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39, 311–314 (2002). (PMID: 12011145173512210.1136/jmg.39.5.311)
Ratner, N. & Miller, S. J. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat. Rev. Cancer 15, 290–301 (2015). (PMID: 25877329482233610.1038/nrc3911)
Wentworth, S. et al. Clinical experience with radiation therapy in the management of neurofibromatosis-associated central nervous system tumors. Int. J. Radiat. Oncol. Biol. Phys. 73, 208–213 (2009). (PMID: 1868753510.1016/j.ijrobp.2008.03.073)
Greenberg, H. M. et al. Radiation therapy in the treatment of aggressive fibromatoses. Int. J. Radiat. Oncol. Biol. Phys. 7, 305–310 (1981). (PMID: 679216710.1016/0360-3016(81)90102-4)
Dombi, E. et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N. Engl. J. Med. 375, 2550–2560 (2016). (PMID: 28029918550859210.1056/NEJMoa1605943)
Gross, A. M. et al. Selumetinib in children with inoperable plexiform neurofibromas. N. Engl. J. Med. 382, 1430–1442 (2020). (PMID: 32187457730565910.1056/NEJMoa1912735)
Yang, F. C. et al. Nf1-dependent tumors require a microenvironment containing Nf1  ; DhhCre mouse model of plexiform neurofibroma using magnetic resonance imaging. Pediatr. Blood Cancer 58, 173–180 (2012). (PMID: 2131928710.1002/pbc.23015)
Ferguson, M. J. et al. Preclinical evidence for the use of sunitinib malate in the treatment of plexiform neurofibromas. Pediatr. Blood Cancer 63, 206–213 (2016). (PMID: 2637501210.1002/pbc.25763)
Gay, C. M., Balaji, K. & Byers, L. A. Giving AXL the axe: targeting AXL in human malignancy. Br. J. Cancer 116, 415–423 (2017). (PMID: 28072762531897010.1038/bjc.2016.428)
Weiss, B. et al. Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a neurofibromatosis Clinical Trials Consortium phase II study. Neuro. Oncol. 17, 596–603 (2015). (PMID: 2531496410.1093/neuonc/nou235)
Jakacki, R. I. et al. Phase II trial of pegylated interferon alfa-2b in young patients with neurofibromatosis type 1 and unresectable plexiform neurofibromas. Neuro. Oncol. 19, 289–297 (2017). (PMID: 27510726)
Dombi, E. et al. NF1 plexiform neurofibroma growth rate by volumetric MRI: relationship to age and body weight. Neurology 68, 643–647 (2007). (PMID: 1721549310.1212/01.wnl.0000250332.89420.e6)
Lock, R. et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J. Clin. Invest. 126, 2181–2190 (2016). (PMID: 27159396488716410.1172/JCI85183)
Choueiri, T. K. et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN trial. J. Clin. Oncol. 35, 591–597 (2017). (PMID: 2819981810.1200/JCO.2016.70.7398)
Cabanillas, M. E. et al. Cabozantinib as salvage therapy for patients with tyrosine kinase inhibitor-refractory differentiated thyroid cancer: results of a multicenter phase II international thyroid oncology group trial. J. Clin. Oncol. 35, 3315–3321 (2017). (PMID: 28817373565287210.1200/JCO.2017.73.0226)
Tolaney, S. M. et al. Phase II and biomarker study of cabozantinib in metastatic triple-negative breast cancer patients. Oncologist 22, 25–32 (2017). (PMID: 27789775531326710.1634/theoncologist.2016-0229)
Yavuz, S. et al. Cabozantinib-induced thyroid dysfunction: a review of two ongoing trials for metastatic bladder cancer and sarcoma. Thyroid 24, 1223–1231 (2014). (PMID: 24724719410637610.1089/thy.2013.0621)
Jousma, E. et al. Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of neurofibromatosis type 1. Pediatr. Blood Cancer 62, 1709–1716 (2015). (PMID: 25907661454655910.1002/pbc.25546)
Leibowitz-Amit, R. et al. Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial. J. Transl. Med. 14, 12 (2016). (PMID: 26762579471249910.1186/s12967-015-0747-y)
Solomon, J., Warren, K., Dombi, E., Patronas, N. & Widemann, B. Automated detection and volume measurement of plexiform neurofibromas in neurofibromatosis 1 using magnetic resonance imaging. Comput. Med. Imaging Graph. 28, 257–265 (2004). (PMID: 1524907110.1016/j.compmedimag.2004.03.002)
Downie, W. W. et al. Studies with pain rating scales. Ann. Rheum. Dis. 37, 378–381 (1978). (PMID: 686873100025010.1136/ard.37.4.378)
Cleeland, C. S. & Ryan, K. M. Pain assessment: global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 23, 129–138 (1994). (PMID: 8080219)
Estes, M. L., Mund, J. A., Ingram, D. A. & Case, J. Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr. Protoc. Cytom. 52, 9.33.1–9.33.11 (2010).
Simon, R. Optimal two-stage designs for phase II clinical trials. Control. Clin. Trials 10, 1–10 (1989). (PMID: 270283510.1016/0197-2456(89)90015-9)
Grant Information:
W81XWH-12-01-0155 International US Army Medical Research and Development Command; U54 CA196519 United States CA NCI NIH HHS; K12-HD000850 International U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD); K12 HD000850 United States HD NICHD NIH HHS; U54-CA196519-04 International U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
Contributed Indexing:
Investigator: CS Shih; AE Armstrong
Molecular Sequence:
ClinicalTrials.gov NCT02101736
Substance Nomenclature:
0 (Anilides)
0 (Protein Kinase Inhibitors)
0 (Pyridines)
1C39JW444G (cabozantinib)
EC 2.7.10.1 (Receptor Protein-Tyrosine Kinases)
Entry Date(s):
Date Created: 20210114 Date Completed: 20210122 Latest Revision: 20230127
Update Code:
20240105
PubMed Central ID:
PMC8275010
DOI:
10.1038/s41591-020-01193-6
PMID:
33442015
Czasopismo naukowe
Neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNs) are progressive, multicellular neoplasms that cause morbidity and may transform to sarcoma. Treatment of Nf1 fl/fl ;Postn-Cre mice with cabozantinib, an inhibitor of multiple tyrosine kinases, caused a reduction in PN size and number and differential modulation of kinases in cell lineages that drive PN growth. Based on these findings, the Neurofibromatosis Clinical Trials Consortium conducted a phase II, open-label, nonrandomized Simon two-stage study to assess the safety, efficacy and biologic activity of cabozantinib in patients ≥16 years of age with NF1 and progressive or symptomatic, inoperable PN ( NCT02101736 ). The trial met its primary outcome, defined as ≥25% of patients achieving a partial response (PR, defined as ≥20% reduction in target lesion volume as assessed by magnetic resonance imaging (MRI)) after 12 cycles of therapy. Secondary outcomes included adverse events (AEs), patient-reported outcomes (PROs) assessing pain and quality of life (QOL), pharmacokinetics (PK) and the levels of circulating endothelial cells and cytokines. Eight of 19 evaluable (42%) trial participants achieved a PR. The median change in tumor volume was 15.2% (range, +2.2% to -36.9%), and no patients had disease progression while on treatment. Nine patients required dose reduction or discontinuation of therapy due to AEs; common AEs included gastrointestinal toxicity, hypothyroidism, fatigue and palmar plantar erythrodysesthesia. A total of 11 grade 3 AEs occurred in eight patients. Patients with PR had a significant reduction in tumor pain intensity and pain interference in daily life but no change in global QOL scores. These data indicate that cabozantinib is active in NF1-associated PN, resulting in tumor volume reduction and pain improvement.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies