Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hidden Vacancy Benefit in Monolayer 2D Semiconductors.

Tytuł:
Hidden Vacancy Benefit in Monolayer 2D Semiconductors.
Autorzy:
Zhang X; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Liao Q; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.; State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Kang Z; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.; State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Liu B; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Liu X; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.; Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China.
Ou Y; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Xiao J; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Du J; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Liu Y; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Gao L; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Gu L; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.; Collaborative Innovation Center of Quantum Matter, Beijing, 100190, China.
Hong M; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Yu H; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Zhang Z; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.; State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Duan X; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
Zhang Y; Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China.; State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Źródło:
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2021 Feb; Vol. 33 (7), pp. e2007051. Date of Electronic Publication: 2021 Jan 14.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Sept. 3, 1997- : Weinheim : Wiley-VCH
Original Publication: Deerfield Beach, FL : VCH Publishers, 1989-
References:
a) A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim, J. Park, Science 2012, 336, 1143;.
b) V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, M. C. Hersam, Nature 2018, 554, 500;.
c) X. Zheng, A. Calo, T. Cao, X. Liu, Z. Huang, P. M. Das, M. Drndic, E. Albisetti, F. Lavini, T. D. Li, V. Narang, W. P. King, J. W. Harrold, M. Vittadello, C. Aruta, D. Shahrjerdi, E. Riedo, Nat. Commun. 2020, 11, 3463.
a) D. Rhodes, S. H. Chae, R. Ribeiro-Palau, J. Hone, Nat. Mater. 2019, 18, 541;.
b) Y. Liu, Y. Guo, Y. Liu, Small Struct. 2021, 2, 2000083.
a) Y. Wang, J. C. Kim, R. J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, H. Y. Jeong, M. Chhowalla, Nature 2019, 568, 70;.
b) Y. Liu, J. Guo, E. Zhu, L. Liao, S. J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Nature 2018, 557, 696;.
c) T. Liu, S. Liu, K. H. Tu, H. Schmidt, L. Chu, D. Xiang, J. Martin, G. Eda, C. A. Ross, S. Garaj, Nat. Nanotechnol. 2019, 14, 223;.
d) D. Akinwande, C. Huyghebaert, C. H. Wang, M. I. Serna, S. Goossens, L. J. Li, H. P. Wong, F. H. L. Koppens, Nature 2019, 573, 507;.
e) G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo, Nat. Nanotechnol. 2014, 9, 768;.
f) B. W. Baugher, H. O. Churchill, Y. Yang, P. Jarillo-Herrero, Nano Lett. 2013, 13, 4212.
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Chem. Soc. Rev. 2018, 47, 3100.
a) X. Zhang, Q. Liao, S. Liu, Z. Kang, Z. Zhang, J. Du, F. Li, S. Zhang, J. Xiao, B. Liu, Y. Ou, X. Liu, L. Gu, Y. Zhang, Nat. Commun. 2017, 8, 15881;.
b) M. Amani, D.-H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, K. Santosh, M. Dubey, Science 2015, 350, 1065.
a) H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, X. Wang, Nat. Commun. 2013, 4, 2642;.
b) D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, A. Kis, ACS Nano 2014, 8, 8174;.
c) W. Zhu, T. Low, Y. H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, P. Avouris, Nat. Commun. 2014, 5, 3087.
a) J. Jadwiszczak, C. O'Callaghan, Y. Zhou, D. S. Fox, E. Weitz, D. Keane, C. P. Cullen, I. O'Reilly, C. Downing, A. Shmeliov, P. Maguire, J. J. Gough, C. McGuinness, M. S. Ferreira, A. L. Bradley, J. J. Boland, G. S. Duesberg, V. Nicolosi, H. Zhang, Sci. Adv. 2018, 4, eaao5031;.
b) A. D. Nguyen, T. K. Nguyen, C. T. Le, S. Kim, F. Ullah, Y. Lee, S. Lee, K. Kim, D. Lee, S. Park, J. S. Bae, J. I. Jang, Y. S. Kim, ACS Omega 2019, 4, 21509;.
c) X. Yan, Y. Jia, X. Yao, Small Struct. 2021, 2, 2000067.
a) M. G. Stanford, P. R. Pudasaini, E. T. Gallmeier, N. Cross, L. Liang, A. Oyedele, G. Duscher, M. Mahjouri-Samani, K. Wang, K. Xiao, D. B. Geohegan, A. Belianinov, B. G. Sumpter, P. D. Rack, Adv. Funct. Mater. 2017, 27, 1702829;.
b) R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, K. S. Novoselov, ACS Nano 2013, 7, 10167;.
c) D. S. Fox, Y. Zhou, P. Maguire, A. O'Neill, C. O'Coileain, R. Gatensby, A. M. Glushenkov, T. Tao, G. S. Duesberg, I. V. Shvets, M. Abid, M. Abid, H. C. Wu, Y. Chen, J. N. Coleman, J. F. Donegan, H. Zhang, Nano Lett. 2015, 15, 5307.
a) S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D.-H. Choe, K. J. Chang, K. Suenaga, Science 2015, 349, 625;.
b) S.-Y. Seo, J. Park, J. Park, K. Song, S. Cha, S. Sim, S.-Y. Choi, H. W. Yeom, H. Choi, M.-H. Jo, Nat. Electron. 2018, 1, 512.
a) X. Zhang, Q. Liao, Z. Kang, B. Liu, Y. Ou, J. Du, J. Xiao, L. Gao, H. Shan, Y. Luo, Z. Fang, P. Wang, Z. Sun, Z. Zhang, Y. Zhang, ACS Nano 2019, 13, 3280;.
b) J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, R. Yang, D. Shi, Y. Jiang, G. Zhang, J. Am. Chem. Soc. 2017, 139, 10216;.
c) L. Gao, Q. Liao, X. Zhang, X. Liu, L. Gu, B. Liu, J. Du, Y. Ou, J. Xiao, Z. Kang, Z. Zhang, Y. Zhang, Adv. Mater. 2020, 32, 1906646.
S. Wang, Z. Qin, G. S. Jung, F. J. Martin-Martinez, K. Zhang, M. J. Buehler, J. H. Warner, ACS Nano 2016, 10, 9831.
a) S. S. Chee, D. Seo, H. Kim, H. Jang, S. Lee, S. P. Moon, K. H. Lee, S. W. Kim, H. Choi, M. H. Ham, Adv. Mater. 2019, 31, 1804422;.
b) Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z. Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y. W. Zhang, Y. Shi, X. Wang, Nat. Commun. 2014, 5, 5290;.
c) H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu, J. Wang, W. Hu, H. Liu, Z. Sun, C. Luo, X. Wu, Z. Xu, D. W. Zhang, W. Bao, P. Zhou, Small 2018, 14, 1803465;.
d) Q. Wang, N. Li, J. Tang, J. Zhu, Q. Zhang, Q. Jia, Y. Lu, Z. Wei, H. Yu, Y. Zhao, Y. Guo, L. Gu, G. Sun, W. Yang, R. Yang, D. Shi, G. Zhang, Nano Lett. 2020, 20, 7193.
X. Chuai, G. Yang, W. Wei, J. Wang, X. Shi, C. Lu, Y. Zhao, Y. Su, Q. Wu, D. Geng, N. Lu, L. Li, M. Liu, Phys. Status Solidi RRL 2019, 13, 1900007.
J. Zhang, J. Wu, H. Guo, W. Chen, J. Yuan, U. Martinez, G. Gupta, A. Mohite, P. M. Ajayan, J. Lou, Adv. Mater. 2017, 29, 1701955.
N. F. Mott, E. A. Davis, Electronic Processes in Noncrystalline Materials, Oxford University Press, Oxford, UK 2012.
J. Xue, S. Huang, J.-Y. Wang, H. Q. Xu, RSC Adv. 2019, 9, 17885.
Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Y. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, T. Chen, Y. Shi, B. Wang, G. Zhang, Y. W. Zhang, X. Wang, Adv. Mater. 2015, 27, 5230.
E. A. Davis, N. F. Mott, Philos. Mag. 1970, 22, 0903.
M. Liu, J. Shi, Y. Li, X. Zhou, D. Ma, Y. Qi, Y. Zhang, Z. Liu, Small 2017, 13, 1602967.
R. J. Tilley, Defects in Solids, John Wiley & Sons, New York 2008.
a) J.-Y. Noh, H. Kim, Y.-S. Kim, Phys. Rev. B 2014, 89, 205417;.
b) J. Wu, Y. Liu, Y. Liu, Y. Cai, Y. Zhao, H. K. Ng, K. Watanabe, T. Taniguchi, G. Zhang, Proc. Natl. Acad. Sci. USA 2020, 117, 18127.
R. Rao, V. Carozo, Y. Wang, A. E. Islam, N. Perea-Lopez, K. Fujisawa, V. H. Crespi, M. Terrones, B. Maruyama, 2D Mater. 2019, 6, 045031.
M. Tosun, L. Chan, M. Amani, T. Roy, G. H. Ahn, P. Taheri, C. Carraro, J. W. Ager, R. Maboudian, A. Javey, ACS Nano 2016, 10, 6853.
S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, New York 2006.
T. Y. Jeong, H. Kim, S. J. Choi, K. Watanabe, T. Taniguchi, K. J. Yee, Y. S. Kim, S. Jung, Nat. Commun. 2019, 10, 3825.
P. Smeys, J. P. Colinge, Solid-State Electron. 1993, 36, 569.
Semiconductor Industry Association, The National Technology Roadmap for Semiconductors 1994, http://www.rennes.supelec.fr/ren/perso/gtourneu/enseignement/roadmap94.pdf (accessed: December 2020).
M. K. Joo, B. H. Moon, H. Ji, G. H. Han, H. Kim, G. Lee, S. C. Lim, D. Suh, Y. H. Lee, Nano Lett. 2016, 16, 6383.
B. Radisavljevic, A. Kis, Nat. Mater. 2013, 12, 815.
S. Cristol, J. F. Paul, E. Payen, D. Bougeard, S. Clémendot, F. Hutschka, J. Phys. Chem. B 2000, 104, 11220.
Y. Deng, L. R. L. Ting, P. H. L. Neo, Y.-J. Zhang, A. A. Peterson, B. S. Yeo, ACS Catal. 2016, 6, 7790.
K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, J. Shan, Nat. Mater. 2013, 12, 207.
W. Bao, X. Cai, D. Kim, K. Sridhara, M. S. Fuhrer, Appl. Phys. Lett. 2013, 102, 042104.
L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, P. D. Ye, Nano Lett. 2014, 14, 6275.
a) R. H. Kun Huang, Solid State Physics, Higher Education Press, Beijing 1988;.
b) S. Takeno, Suppl. Prog. Theor. Phys. 1970, 45, 137.
X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, P. H. Tan, Chem. Soc. Rev. 2015, 44, 2757.
Y. Zhu, Y. Li, G. Arefe, R. A. Burke, C. Tan, Y. Hao, X. Liu, X. Liu, W. J. Yoo, M. Dubey, Q. Lin, J. C. Hone, Nano Lett. 2018, 18, 3807.
L. Xie, M. Liao, S. Wang, H. Yu, L. Du, J. Tang, J. Zhao, J. Zhang, P. Chen, X. Lu, G. Wang, G. Xie, R. Yang, D. Shi, G. Zhang, Adv. Mater. 2017, 29, 1702522.
M. Zhao, Y. Ye, Y. Han, Y. Xia, H. Zhu, S. Wang, Y. Wang, D. A. Muller, X. Zhang, Nat. Nanotechnol. 2016, 11, 954.
K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, J. Park, Nature 2015, 520, 656.
M. H. Guimaraes, H. Gao, Y. Han, K. Kang, S. Xie, C. J. Kim, D. A. Muller, D. C. Ralph, J. Park, ACS Nano 2016, 10, 6392.
K. K. H. Smithe, C. D. English, S. V. Suryavanshi, E. Pop, 2D Mater. 2016, 4, 011009.
H. Yu, M. Liao, W. Zhao, G. Liu, X. J. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, K. Deng, S. Zhou, J. A. Shi, L. Gu, C. Shen, T. Zhang, L. Du, L. Xie, J. Zhu, W. Chen, R. Yang, D. Shi, G. Zhang, ACS Nano 2017, 11, 12001.
D. Jariwala, V. K. Sangwan, D. J. Late, J. E. Johns, V. P. Dravid, T. J. Marks, L. J. Lauhon, M. C. Hersam, Appl. Phys. Lett. 2013, 102, 173107.
P. Yang, Y. Shan, J. Chen, G. Ekoya, J. Han, Z. J. Qiu, J. Sun, F. Chen, H. Wang, W. Bao, L. Hu, R. J. Zhang, R. Liu, C. Cong, Nanoscale 2020, 12, 1958.
N. Li, Z. Wei, J. Zhao, Q. Wang, C. Shen, S. Wang, J. Tang, R. Yang, D. Shi, G. Zhang, Adv. Mater. Interfaces 2019, 6, 1802055.
M. L. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu, S. Wang, H. Du, B. Dong, J. Zhang, Y. Sun, S. Qiu, T. Alava, S. Liu, D. M. Sun, Z. Han, Nat. Commun. 2020, 11, 1205.
S. Song, Y. Sim, S.-Y. Kim, J. H. Kim, I. Oh, W. Na, D. H. Lee, J. Wang, S. Yan, Y. Liu, J. Kwak, J.-H. Chen, H. Cheong, J.-W. Yoo, Z. Lee, S.-Y. Kwon, Nat. Electron. 2020, 3, 207.
M. C. Chang, P. H. Ho, M. F. Tseng, F. Y. Lin, C. H. Hou, I. K. Lin, H. Wang, P. P. Huang, C. H. Chiang, Y. C. Yang, I. T. Wang, H. Y. Du, C. Y. Wen, J. J. Shyue, C. W. Chen, K. H. Chen, P. W. Chiu, L. C. Chen, Nat. Commun. 2020, 11, 3682.
X. Zheng, A. Calò, E. Albisetti, X. Liu, A. S. M. Alharbi, G. Arefe, X. Liu, M. Spieser, W. J. Yoo, T. Taniguchi, K. Watanabe, C. Aruta, A. Ciarrocchi, A. Kis, B. S. Lee, M. Lipson, J. Hone, D. Shahrjerdi, E. Riedo, Nat. Electron. 2019, 2, 17.
J. H. Park, A. Sanne, Y. Guo, M. Amani, K. Zhang, H. C. Movva, J. A. Robinson, A. Javey, J. Robertson, S. K. Banerjee, Sci. Adv. 2017, 3, e1701661.
S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, P. Samorì, Adv. Mater. 2017, 29, 1606760.
X. Yin, Q. Wang, L. Cao, C. S. Tang, X. Luo, Y. Zheng, L. M. Wong, S. J. Wang, S. Y. Quek, W. Zhang, A. Rusydi, A. T. S. Wee, Nat. Commun. 2017, 8, 486.
W. Liu, D. Sarkar, J. Kang, W. Cao, K. Banerjee, ACS Nano 2015, 9, 7904.
Z. Wu, B. T. Zhou, X. Cai, P. Cheung, G. B. Liu, M. Huang, J. Lin, T. Han, L. An, Y. Wang, S. Xu, G. Long, C. Cheng, K. T. Law, F. Zhang, N. Wang, Nat. Commun. 2019, 10, 611.
Y. Zhao, S. Bertolazzi, M. S. Maglione, C. Rovira, M. Mas-Torrent, P. Samorì, Adv. Mater. 2020, 32, 2000740.
Z. Cao, F. Lin, G. Gong, H. Chen, J. Martin, Appl. Phys. Lett. 2020, 116, 022101.
L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair, Y. Lin, Y. Zhang, M. H. Chuang, Y. H. Lee, D. Antoniadis, J. Kong, A. Chandrakasan, T. Palacios, Nano Lett. 2016, 16, 6349.
K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, J. He, Nano Lett. 2017, 17, 1065.
Z. Dai, Z. Wang, X. He, X.-X. Zhang, H. N. Alshareef, Adv. Funct. Mater. 2017, 27, 1703119.
L. Yu, D. El-Damak, S. Ha, X. Ling, Y. Lin, A. Zubair, Y. Zhang, Y. H. Lee, J. Kong, A. Chandrakasan, T. Palacios, in 2015 IEEE Int. Electron Devices Meeting (IEDM), IEEE, Piscataway, NJ, USA 2015, https://doi.org/10.1109/IEDM.2015.7409814.
D. Wu, Z. Zhang, D. Lv, G. Yin, Z. Peng, C. Jin, Mater. Express 2016, 6, 198.
L. Wang, L. Chen, S. L. Wong, X. Huang, W. Liao, C. Zhu, Y. F. Lim, D. Li, X. Liu, D. Chi, K. W. Ang, Adv. Electron. Mater. 2019, 5, 1900393.
J. Pu, K. Funahashi, C. H. Chen, M. Y. Li, L. J. Li, T. Takenobu, Adv. Mater. 2016, 28, 4111.
J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, L. J. Li, ACS Nano 2014, 8, 923.
S. Larentis, B. Fallahazad, H. C. P. Movva, K. Kim, A. Rai, T. Taniguchi, K. Watanabe, S. K. Banerjee, E. Tutuc, ACS Nano 2017, 11, 4832.
H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng, K. Tsukagoshi, Nanoscale 2013, 5, 9666.
Grant Information:
51527802 National Natural Science Foundation of China; 51991340 National Natural Science Foundation of China; 51991342 National Natural Science Foundation of China; 51972022 National Natural Science Foundation of China; 51722203 National Natural Science Foundation of China; 51672026 National Natural Science Foundation of China; B14003 Overseas Expertise Introduction Projects for Discipline Innovation; 2018YFA0703503 National Key Research and Development Program of China; 2016YFA0202701 National Key Research and Development Program of China; Z180011 Natural Science Foundation of Beijing Municipality; FRF-TP-18-004A2 Fundamental Research Funds for the Central Universities; FRF-TP-18-001C1 Fundamental Research Funds for the Central Universities; FRF-TP-19-025A3 Fundamental Research Funds for the Central Universities
Contributed Indexing:
Keywords: defect engineering; electrical transport; field-effect transistors; monolayer MoS 2; sulfur vacancies
Entry Date(s):
Date Created: 20210115 Latest Revision: 20210217
Update Code:
20240105
DOI:
10.1002/adma.202007051
PMID:
33448081
Czasopismo naukowe
Monolayer 2D semiconductors (e.g., MoS 2 ) are of considerable interest for atomically thin transistors but generally limited by insufficient carrier mobility or driving current. Minimizing the lattice defects in 2D semiconductors represents a common strategy to improve their electronic properties, but has met with limited success to date. Herein, a hidden benefit of the atomic vacancies in monolayer 2D semiconductors to push their performance limit is reported. By purposely tailoring the sulfur vacancies (SVs) to an optimum density of 4.7% in monolayer MoS 2 , an unusual mobility enhancement is obtained and a record-high carrier mobility (>115 cm 2 V -1 s -1 ) is achieved, realizing monolayer MoS 2 transistors with an exceptional current density (>0.60 mA µm -1 ) and a record-high on/off ratio >10 10 , and enabling a logic inverter with an ultrahigh voltage gain >100. The systematic transport studies reveal that the counterintuitive vacancy-enhanced transport originates from a nearest-neighbor hopping conduction model, in which an optimum SV density is essential for maximizing the charge hopping probability. Lastly, the vacancy benefit into other monolayer 2D semiconductors is further generalized; thus, a general strategy for tailoring the charge transport properties of monolayer materials is defined.
(© 2021 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies