Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Loss of type I IFN responsiveness impairs natural killer cell antitumor activity in breast cancer.

Tytuł:
Loss of type I IFN responsiveness impairs natural killer cell antitumor activity in breast cancer.
Autorzy:
Zanker DJ; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
Owen KL; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
Baschuk N; Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
Spurling AJ; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
Parker BS; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia. .; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia. .; Department of Biochemistry and Genetics, La Trobe Institute from Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia. .
Źródło:
Cancer immunology, immunotherapy : CII [Cancer Immunol Immunother] 2021 Aug; Vol. 70 (8), pp. 2125-2138. Date of Electronic Publication: 2021 Jan 15.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Berlin : Springer Verlag
Original Publication: Berlin ; New York, NY : Springer International, c1982-
MeSH Terms:
Breast Neoplasms/*immunology
Interferon Type I/*immunology
Killer Cells, Natural/*immunology
Animals ; Carcinogenesis/immunology ; Cell Line, Tumor ; Female ; Lymphocyte Activation/immunology ; Lymphocytes/immunology ; Mice ; Mice, Inbred C57BL ; Receptor, Interferon alpha-beta/immunology ; Signal Transduction/immunology
References:
Galon J, Angell H, Bedognetti D, Marincola F (2013) The Continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39:11–26. https://doi.org/10.1016/j.immuni.2013.07.008. (PMID: 10.1016/j.immuni.2013.07.00823890060)
Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32:1267–1284. https://doi.org/10.1101/gad.314617.118. (PMID: 10.1101/gad.314617.118302750436169832)
Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245. (PMID: 10.1038/nrc324522419253)
Boon T, Cerottini J-C, Van den Eynde B et al (1994) Tumor antigens recognized by T Lymphocytes. Annu Rev Immunol 12:337–365. https://doi.org/10.1146/annurev.iy.12.040194.002005. (PMID: 10.1146/annurev.iy.12.040194.0020058011285)
Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 80(348):69–74. https://doi.org/10.1126/science.aaa4971. (PMID: 10.1126/science.aaa4971)
Kvistborg P, Philips D, Kelderman S et al (2014) Anti–CTLA-4 therapy broadens the melanoma-reactive CD8T cell response. Sci Transl Med 6:254–128. https://doi.org/10.1126/scitranslmed.3008918. (PMID: 10.1126/scitranslmed.3008918)
Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954. (PMID: 10.1038/nature13954254285054246418)
Gao J, Ward JF, Pettaway CA et al (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. https://doi.org/10.1038/nm.4308. (PMID: 10.1038/nm.4308292274776484428)
Michie J, Beavis PA, Freeman AJ et al (2019) Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunol Res 7:183–192. https://doi.org/10.1158/2326-6066.CIR-18-0428. (PMID: 10.1158/2326-6066.CIR-18-042830651288)
Martinez M, Moon EK (2019) CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 10:128. (PMID: 10.3389/fimmu.2019.00128)
Smyth MJ, Thia KYT, Street SEA et al (2000) Differential tumor surveillance by natural killer (Nk) and Nkt Cells. J Exp Med 191:661–668. https://doi.org/10.1084/jem.191.4.661. (PMID: 10.1084/jem.191.4.661106848582195840)
Sathe P, Delconte RB, Souza-Fonseca-Guimaraes F et al (2014) Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat Commun 5:1–10. https://doi.org/10.1038/ncomms5539. (PMID: 10.1038/ncomms5539)
Smyth MJ, Cretney E, Kelly JM et al (2005) Activation of NK cell cytotoxicity. Mol Immunol 42:501–510. https://doi.org/10.1016/j.molimm.2004.07.034. (PMID: 10.1016/j.molimm.2004.07.03415607806)
Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M et al (2019) A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol Res 7:1162–1174. https://doi.org/10.1158/2326-6066.CIR-18-0500. (PMID: 10.1158/2326-6066.CIR-18-050031088844)
Pasero C, Gravis G, Granjeaud S et al (2015) Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget 6:14360–14373. https://doi.org/10.18632/oncotarget.3965. (PMID: 10.18632/oncotarget.3965259613174546472)
Green TL, Cruse JM, Lewis RE (2013) Circulating tumor cells (CTCs) from metastatic breast cancer patients linked to decreased immune function and response to treatment. Exp Mol Pathol 95:174–179. https://doi.org/10.1016/j.yexmp.2013.06.013. (PMID: 10.1016/j.yexmp.2013.06.01323831428)
Crouse J, Xu HC, Lang PA, Oxenius A (2015) NK cells regulating T cell responses: mechanisms and outcome. Trends Immunol 36:49–58. https://doi.org/10.1016/j.it.2014.11.001. (PMID: 10.1016/j.it.2014.11.00125432489)
Kärre K (2002) NK cells, MHC class I molecules and the missing self. Scand J Immunol 55:221–228. https://doi.org/10.1046/j.1365-3083.2002.01053.x. (PMID: 10.1046/j.1365-3083.2002.01053.x11940227)
Huntington ND, Nutt SL, Carotta S (2013) Regulation of murine natural killer cell commitment. Front Immunol 4:14. https://doi.org/10.3389/fimmu.2013.00014. (PMID: 10.3389/fimmu.2013.00014233868523558707)
Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171. https://doi.org/10.1038/35093109. (PMID: 10.1038/35093109115579813900321)
Gao J, Zheng Q, Xin N et al (2017) CD155, an onco-immunologic molecule in human tumors. Cancer Sci 108:1934–1938. https://doi.org/10.1111/cas.13324. (PMID: 10.1111/cas.13324287305955623745)
Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: Implications for cancer therapy. Nat Rev Cancer 16:131–144. https://doi.org/10.1038/nrc.2016.14. (PMID: 10.1038/nrc.2016.1426911188)
Owen KL, Gearing LJ, Zanker DJ et al (2020) Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep. https://doi.org/10.15252/embr.202050162. (PMID: 10.15252/embr.202050162323148737271653)
Fuertes MB, Kacha AK, Kline J et al (2011) Host type I IFN signals are required for antitumor CD8 dendritic cells. J Exp Med 208:2005–2016. https://doi.org/10.1084/jem.20101159. (PMID: 10.1084/jem.20101159219307653182064)
Stone ML, Chiappinelli KB, Li H et al (2017) Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci 114:E10981–E10990. https://doi.org/10.1073/pnas.1712514114. (PMID: 10.1073/pnas.1712514114292036685754782)
Sistigu A, Yamazaki T, Vacchelli E et al (2014) Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20:1301. (PMID: 10.1038/nm.3708)
Budhwani M, Mazzieri R, Dolcetti R (2018) Plasticity of type I interferon-mediated responses in cancer therapy: from anti-tumor immunity to resistance. Front Oncol 8:322. https://doi.org/10.3389/fonc.2018.00322. (PMID: 10.3389/fonc.2018.00322301867686110817)
Brockwell NK, Owen KL, Zanker D et al (2017) Neoadjuvant Interferons: Critical for effective PD-1 based immunotherapy in TNBC. Cancer Immunol Res 5(10):871–884. (PMID: 10.1158/2326-6066.CIR-17-0150)
Minn AJ, Wherry EJ (2016) Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell 165:272–275. https://doi.org/10.1016/j.cell.2016.03.031. (PMID: 10.1016/j.cell.2016.03.03127058661)
Honda K, Yanai H, Negishi H et al (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777. https://doi.org/10.1038/nature03464. (PMID: 10.1038/nature0346415800576)
Owen KL, Brockwell NK, Parker BS (2019) JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers (Basel) 11:2002. https://doi.org/10.3390/cancers11122002. (PMID: 10.3390/cancers11122002)
Nguyen KB, Cousens LP, Doughty LA et al (2000) Interferon alpha/beta-mediated inhibition and promotion of interferon gamma: STAT1 resolves a paradox. Nat Immunol 1:70–76. https://doi.org/10.1038/76940. (PMID: 10.1038/7694010881178)
Ning S, Huye LE, Pagano JS (2005) Regulation of the transcriptional activity of the IRF7 promoter by a pathway independent of interferon signaling. J Biol Chem 280:12262–12270. https://doi.org/10.1074/jbc.M404260200. (PMID: 10.1074/jbc.M40426020015664995)
Edwards BS, Merritt JA, Fuhlbrigge RC, Borden EC (1985) Low doses of interferon alpha result in more effective clinical natural killer cell activation. J Clin Invest 75:1908–1913. https://doi.org/10.1172/Jci111905. (PMID: 10.1172/Jci1119054008643425547)
Swann JB, Hayakawa Y, Zerafa N et al (2007) Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J Immunol 178:7540–7549. https://doi.org/10.4049/jimmunol.178.12.7540. (PMID: 10.4049/jimmunol.178.12.754017548588)
Bidwell BN, Slaney CY, Withana NP et al (2012) Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 18:1224–1231. https://doi.org/10.1038/nm.2830. (PMID: 10.1038/nm.283022820642)
Critchley-Thorne RJ, Simons DL, Yan N et al (2009) Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci 106:9010–9015. https://doi.org/10.1073/pnas.0901329106. (PMID: 10.1073/pnas.0901329106194516442690021)
Jacquelot N, Yamazaki T, Roberti MP et al (2019) Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res 29:846–861. https://doi.org/10.1038/s41422-019-0224-x. (PMID: 10.1038/s41422-019-0224-x314817616796942)
Fuchs SY (2013) Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J Interf Cytokine Res 33:211–225. https://doi.org/10.1089/jir.2012.0117. (PMID: 10.1089/jir.2012.0117)
Katlinski KV, Gui J, Katlinskaya YV et al (2017) Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell 31:194–207. https://doi.org/10.1016/j.ccell.2017.01.004. (PMID: 10.1016/j.ccell.2017.01.004281965945313042)
Diamond MS, Kinder M, Matsushita H et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208:1989–2003. https://doi.org/10.1084/jem.20101158. (PMID: 10.1084/jem.20101158219307693182061)
Brockwell NK, Rautela J, Owen KL et al (2019) Tumor inherent interferon regulators as biomarkers of long-term chemotherapeutic response in TNBC. NPJ Precis Oncol 3:21. https://doi.org/10.1038/s41698-019-0093-2. (PMID: 10.1038/s41698-019-0093-2314821366715634)
Savas P, Virassamy B, Ye C et al (2018) Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 24:986–993. https://doi.org/10.1038/s41591-018-0078-7. (PMID: 10.1038/s41591-018-0078-729942092)
Johnstone CN, Smith YE, Cao Y et al (2015) Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis Model Mech 8:237–251. https://doi.org/10.1242/dmm.017830. (PMID: 10.1242/dmm.017830256339814348562)
Rautela J, Baschuk N, Slaney CY et al (2015) Loss of host Type-I IFN signaling accelerates metastasis and impairs NK-cell antitumor function in multiple models of breast cancer. Cancer Immunol Res 3:1207–1217. https://doi.org/10.1158/2326-6066.CIR-15-0065. (PMID: 10.1158/2326-6066.CIR-15-006526198985)
Rusinova I, Forster S, Yu S et al (2013) Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 41:D1040–D1046. https://doi.org/10.1093/nar/gks1215. (PMID: 10.1093/nar/gks121523203888)
Zanker D, Xiao K, Oveissi S et al (2013) An optimized method for establishing high purity murine CD8+ T cell cultures. J Immunol Methods 387:173–180. https://doi.org/10.1016/j.jim.2012.10.012. (PMID: 10.1016/j.jim.2012.10.01223098837)
Lu C, Klement JD, Ibrahim ML et al (2019) Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. J Immunother cancer 7:157. https://doi.org/10.1186/s40425-019-0635-8. (PMID: 10.1186/s40425-019-0635-8312289466589175)
Nocera DA, Roselli E, Araya P et al (2016) In vivo visualizing the IFN-β response required for tumor growth control in a therapeutic model of polyadenylic-polyuridylic acid administration. J Immunol 196:2860–2869. https://doi.org/10.4049/jimmunol.1501044. (PMID: 10.4049/jimmunol.150104426880763)
Guan J, Miah SMS, Wilson ZS et al (2014) Role of type I interferon receptor signaling on NK cell development and functions. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0111302. (PMID: 10.1371/journal.pone.0111302)
Oh JH, Kim MJ, Choi SJ et al (2019) Sustained type I interferon reinforces NK cell–mediated cancer immunosurveillance during chronic virus infection. Cancer Immunol Res 7:584–599. https://doi.org/10.1158/2326-6066.CIR-18-0403. (PMID: 10.1158/2326-6066.CIR-18-040330808680)
Mizutani T, Neugebauer N, Putz EM et al (2012) Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance. Oncoimmunology 1:1027–1037. https://doi.org/10.4161/onci.21284. (PMID: 10.4161/onci.21284231702513494617)
Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:15–22. https://doi.org/10.1016/j.jim.2004.08.008. (PMID: 10.1016/j.jim.2004.08.00815604012)
Kwaa AKR, Talana CAG, Blankson JN (2019) Interferon alpha enhances NK Cell function and the suppressive capacity of HIV-specific CD8+ T Cells. J Virol 93:e01541-e1618. https://doi.org/10.1128/JVI.01541-18. (PMID: 10.1128/JVI.01541-18304047996340025)
Katlinskaya YV, Katlinski KV, Yu Q et al (2016) Suppression of Type I interferon signaling overcomes oncogene-induced senescence and mediates melanoma development and progression. Cell Rep 15:171–180. https://doi.org/10.1016/j.celrep.2016.03.006. (PMID: 10.1016/j.celrep.2016.03.006270521624826807)
Böttcher JP, Bonavita E, Chakravarty P et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172:1022-1037.e14. https://doi.org/10.1016/j.cell.2018.01.004. (PMID: 10.1016/j.cell.2018.01.0042942963329429633)
Putz EM, Guillerey C, Kos K et al (2017) Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncoimmunology 6:e1267892. https://doi.org/10.1080/2162402X.2016.1267892. (PMID: 10.1080/2162402X.2016.1267892283448785353935)
Pesce S, Tabellini G, Cantoni C et al (2015) B7–H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncoimmunology 4:e1001224–e1001224. https://doi.org/10.1080/2162402X.2014.1001224. (PMID: 10.1080/2162402X.2014.1001224261373984485754)
Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738. https://doi.org/10.1038/nature01112. (PMID: 10.1038/nature0111212384702)
Whiteside TL (2013) Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans 41:245–251. https://doi.org/10.1042/BST20120265. (PMID: 10.1042/BST20120265233562913721347)
Klover PJ, Muller WJ, Robinson GW et al (2010) Loss of STAT1 from mouse mammary epithelium results in an increased neu-induced tumor burden. Neoplasia 12:899–905. https://doi.org/10.1593/neo.10716. (PMID: 10.1593/neo.10716210766152978912)
Sisirak V, Faget J, Gobert M et al (2012) Impaired IFN-α production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res 72:5188–5197. (PMID: 10.1158/0008-5472.CAN-11-3468)
Ivanova DL, Krempels R, Denton SL, et al (2019) NK cells negatively regulate CD8 T cells to promote immune exhaustion and chronic Toxoplasma gondii infection. bioRxiv 864272. https://doi.org/ https://doi.org/10.1101/864272.
Cook KD, Whitmire JK (2013) The depletion of NK cells prevents T cell exhaustion to efficiently control disseminating virus infection. J Immunol 190:641–649. https://doi.org/10.4049/jimmunol.1202448. (PMID: 10.4049/jimmunol.120244823241878)
Iraolagoitia XLR, Spallanzani RG, Torres NI et al (2016) NK Cells Restrain spontaneous antitumor CD8+ T cell priming through PD-1/PD-L1 interactions with dendritic cells. J Immunol 197:953–961. https://doi.org/10.4049/jimmunol.1502291. (PMID: 10.4049/jimmunol.150229127342842)
López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L (2017) Control of Metastasis by NK Cells. Cancer Cell 32:135–154. https://doi.org/10.1016/j.ccell.2017.06.009. (PMID: 10.1016/j.ccell.2017.06.00928810142)
Delahaye NF, Rusakiewicz S, Martins I et al (2011) Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med 17:700–707. https://doi.org/10.1038/nm.2366. (PMID: 10.1038/nm.236621552268)
Hoover RG, Gullickson G, Kornbluth J (2012) Natural killer lytic-associated molecule plays a role in controlling tumor dissemination and metastasis. Front Immunol 3:1–9. https://doi.org/10.3389/fimmu.2012.00393. (PMID: 10.3389/fimmu.2012.00393)
Hoover RG, Gullickson G, Kornbluth J (2009) Impaired NK Cytolytic activity and enhanced tumor growth in NK lytic-associated molecule-deficient mice. J Immunol 183:6913–6921. https://doi.org/10.4049/jimmunol.0901679. (PMID: 10.4049/jimmunol.090167919915045)
Hodi FS, Day SJO, Mcdermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. https://doi.org/10.1056/NEJMoa1003466.Improved. (PMID: 10.1056/NEJMoa1003466.Improved35492973549297)
Bald T, Landsberg J, Lopez-Ramos D et al (2014) Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov 4:674–687. https://doi.org/10.1158/2159-8290.CD-13-0458. (PMID: 10.1158/2159-8290.CD-13-045824589924)
Musella M, Manic G, De Maria R et al (2017) Type-I-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications. Oncoimmunology 6:1–12. https://doi.org/10.1080/2162402X.2017.1314424. (PMID: 10.1080/2162402X.2017.1314424)
Xu HC, Grusdat M, Pandyra AA et al (2014) Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity 40:949–960. https://doi.org/10.1016/j.immuni.2014.05.004. (PMID: 10.1016/j.immuni.2014.05.00424909887)
Curran E, Chen X, Corrales L et al (2016) STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep 15:2357–2366. https://doi.org/10.1016/j.celrep.2016.05.023. (PMID: 10.1016/j.celrep.2016.05.023272641755116809)
Nicolai CJ, Wolf N, Chang I-C et al (2020) NK cells mediate clearance of CD8+ T cell–resistant tumors in response to STING agonists. Sci Immunol 5:eaaz2738. https://doi.org/10.1126/sciimmunol.aaz2738. (PMID: 10.1126/sciimmunol.aaz2738321982227228660)
Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747. https://doi.org/10.1038/nri911. (PMID: 10.1038/nri91112360212)
Kajitani K, Tanaka Y, Arihiro K et al (2012) Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells. Breast Cancer Res Treat 134:139–155. https://doi.org/10.1007/s10549-011-1944-x. (PMID: 10.1007/s10549-011-1944-x22261932)
Jun E, Song AY, Choi J-W et al (2019) Progressive impairment of nk cell cytotoxic degranulation is associated with TGF-β1 deregulation and disease progression in pancreatic cancer. Front Immunol 10:1354. (PMID: 10.3389/fimmu.2019.01354)
Grant Information:
1127757 Cancer Council Victoria
Contributed Indexing:
Keywords: Antitumor immunity; Breast cancer; Immunotherapy; Natural killer cells; Type I interferon
Substance Nomenclature:
0 (Interferon Type I)
156986-95-7 (Receptor, Interferon alpha-beta)
Entry Date(s):
Date Created: 20210115 Date Completed: 20210726 Latest Revision: 20210726
Update Code:
20240105
DOI:
10.1007/s00262-021-02857-z
PMID:
33449132
Czasopismo naukowe
Competent type I IFN signaling is the lynchpin of most immune surveillance mechanisms and has recently proven critical to the efficacy of several anticancer agents. Expression of the type I IFN receptor, IFNAR, underpins type I IFN responsiveness in all cells and facilitates the activation and cytotoxic potential of lymphocytes, while loss of IFNAR on lymphocytes has previously been associated with tumor progression and poor patient survival. This study underscores the importance of intact type I IFN signaling to NK cells in the regulation of tumorigenesis and metastasis, whereby ablation of NK cell IFNAR1 impairs antitumor activity and tumor clearance. Using a preclinical model of triple negative breast cancer, we identified that intact IFNAR on NK cells is required for an effective response to type I IFN-inducing immunotherapeutics that may be mediated by pathways associated with NK cell degranulation. Taken together, these data provide a rationale for considering the IFNAR status on NK cells when devising therapeutic strategies aimed at inducing systemic type I IFN signaling in breast cancer.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies