Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Global patterns and a latitudinal gradient of flower disparity: perspectives from the angiosperm order Ericales.

Tytuł :
Global patterns and a latitudinal gradient of flower disparity: perspectives from the angiosperm order Ericales.
Autorzy :
Chartier M; Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria.
von Balthazar M; Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria.
Sontag S; Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria.
Löfstrand S; Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria.
Palme T; Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria.
Jabbour F; Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France.
Sauquet H; National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW, 2000, Australia.; Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, 2033, Australia.
Schönenberger J; Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, 1030, Austria.
Pokaż więcej
Źródło :
The New phytologist [New Phytol] 2021 Apr; Vol. 230 (2), pp. 821-831. Date of Electronic Publication: 2021 Mar 04.
Typ publikacji :
Journal Article; Research Support, Non-U.S. Gov't
Język :
English
Imprint Name(s) :
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
References :
Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32-46.
Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D. 2015. The origins of reproductive isolation in plants. New Phytologist 207: 968-984.
Basga E, Sidonie FT, Fohouo F-NT. 2018. Foraging and pollination activity of Xylocopa olivacea (Hymenoptera: Apidae) on Vitellaria paradoxa (Sapotaceae) flowers at Ouro-Gadji (Garoua, Cameroon). Journal of Entomology and Zoology Studies 6: 1015-1022.
Bawa KS. 1990. Plant-pollinator interactions in tropical rain forests. Annual Review of Ecology and Systematics 21: 399-422.
Belmaker J, Jetz W. 2015. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecology Letters 18: 563-571.
Bivand R, Lewin-Koh N. 2017. maptools: tools for reading and handling spatial objects. R package v.0.9-2. [WWW document] URL https://CRAN.R-project.org/package=maptools.
Bonnini S, Corain L, Marozzi M, Salmaso L. 2014. Nonparametric hypothesis testing: rank and permutation methods with applications in R. Chichester, UK: John Wiley & Sons.
Brown JH. 2014. Why are there so many species in the tropics? Journal of Biogeography 41: 8-22.
Buchmann SL. 1987. The ecology of oil flowers and their bees. Annual Review of Ecology and Systematics 18: 343-369.
Chamberlain S. 2017. rgbif: interface to the Global ‘Biodiversity’ Information Facility API. R package v.0.9.9. [WWW document] URL https://CRAN.R-project.org/package=rgbif.
Chartier M, Jabbour F, Gerber S, Mitteroecker P, Sauquet H, von Balthazar M, Staedler Y, Crane PR, Schönenberger J. 2014. The floral morphospace - a modern comparative approach to study angiosperm evolution. New Phytologist 204: 841-853.
Chartier M, Löfstrand S, von Balthazar M, Gerber S, Jabbour F, Sauquet H, Schönenberger J. 2017. How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales. Proceedings of the Royal Society B: Biological Sciences 284: e20170066.
Ciampaglio CN, Kemp M, McShea DW. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27: 695-715.
Cleghorn ML. 1922. Observations on the bat-flowers of the mohwa (Bassia latifolia). Journal and Proceedings of the Asiatic Society of Bengal 18: 517-576.
Cornwell WK, Westoby M, Falster DS, FitzJohn RG, O'Meara BC, Pennell MW, McGlinn DJ, Eastman JM, Moles AT, Reich PB et al. 2014. Functional distinctiveness of major plant lineages. Journal of Ecology 102: 345-356.
Cox B. 2001. The biogeographic regions reconsidered. Journal of Biogeography 28: 511-523.
Delmas CE, Kooyman RM, Rossetto M. 2020. Evolutionary constraints and adaptation shape the size and colour of rain forest fruits and flowers at continental scale. Global Ecology and Biogeography, 29: 830-841.
Eble GJ. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26: 56-79.
Endress PK. 1996. Diversity and evolutionary biology of tropical flowers. Cambridge, UK: Cambridge University Press.
Erwin DH. 2007. Disparity: morphological pattern and developmental context. Palaeontology 50: 57-73.
Fine PV. 2015. Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology Evolution and Systematics 46: 369-392.
Foote M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25: 1-115.
Gaston KJ. 2000. Global patterns in biodiversity. Nature 405: 220-227.
Grant V. 1994. Modes and origins of mechanical and ethological isolation in angiosperms. Proceedings of the National Academy of Sciences, USA 91: 3-10.
Harder LD, Barrett SC, eds. 2006. Ecology and evolution of flowers. Oxford, UK: Oxford University Press.
Hawkins D. 2014. Biomeasurement: a student's guide to biological statistics. Oxford, UK: Oxford University Press.
Hillebrand H. 2004. On the generality of the latitudinal diversity gradient. American Naturalist 163: 192-211.
Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, Filstrup CT, Harpole WS, Hodapp D, Larsen S et al. 2018. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. Journal of Applied Ecology 55: 169-184.
Jablonski D, Huang S, Roy K, Valentine JW. 2017. Shaping the latitudinal diversity gradient: new perspectives from a synthesis of paleobiology and biogeography. American Naturalist 189: 1-12.
Kerkhoff AJ, Moriarty PE, Weiser MD. 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences, USA 111: 8125-8130.
Kubitzki K. 2004. Flowering plants, dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. The families and genera of vascular plants. Vol. 6. Berlin, Germany: Springer.
Lamanna C, Blonder B, Violle C, Kraft NJ, Sandel B, Šímová I, Donoghue JC II, Svenning J-C, McGill BJ, Boyle B et al. 2014. Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences, USA 111: 13745-13750.
Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009. The velocity of climate change. Nature 462: 1052-1055.
Lupia R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25: 1-28.
Mander L. 2016. A combinatorial approach to angiosperm pollen morphology. Proceedings of the Royal Society B: Biological Sciences 283: e20162033.
Mander L. 2018. The latitudinal distribution of morphological diversity among Holocene angiosperm pollen grains from eastern North America and the Neotropics. Integrative and Comparative Biology 58: 1170-1178.
Mannion PD, Upchurch P, Benson RB, Goswami A. 2014. The latitudinal biodiversity gradient through deep time. Trends in Ecology & Evolution 29: 42-50.
Minelli A. 2015. Species diversity vs. morphological disparity in the light of evolutionary developmental biology. Annals of Botany 117: 781-794.
Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10: 315-331.
Microsoft Corporation, Weston S. 2019. doParallel: foreach parallel adaptor for the 'parallel' package. R package v.1.0.15. [WWW document] URL https://CRAN.R-project.org/package=doParallel.
Microsoft Corporation, Weston S. 2020. foreach: provides foreach looping construct. R package v.1.5.0. [WWW document] URL https://CRAN.R-project.org/package=foreach.
Nathan PT, Rughuram H, Karuppudurai T, Marimuthu G. 2009. Bat foraging strategies and pollination of Madhuca latifolia (Sapotaceae) in southern India. Acta Chiroperologica 11: 435-441.
Neige P. 2003. Spatial patterns of disparity and diversity of the Recent cuttlefishes (Cephalopoda) across the Old World. Journal of Biogeography 30: 1125-1137.
Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos PM et al. 2017. vegan: community; ecology package. R package v.2.4-3. [WWW document] URL https://CRAN.R-project.org/package=vegan.
Ollerton J, Johnson SD, Hingston AB. 2006. Geographical variation in diversity and specificity of pollination systems. In: Waser NM, Ollerton J, eds. Plant-pollinator interactions: from specialization to generalization. Chicago, IL, USA: The University of Chicago Press, 283-308.
Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals? Oikos 120: 321-326.
Oyston JW, Hughes M, Gerber S, Wills MA. 2015. Why should we investigate the morphological disparity of plant clades? Annals of Botany 117: 859-879.
Peel MC, Finlayson BL, Mcmahon TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 4: 439-473.
Pianka ER. 1966. Latitudinal gradients in species diversity: a review of concepts. American Naturalist 100: 33-46.
van der Pijl L. 1936. Fledermauseund Blumen. Flora 31: 1-40.
Pontarp M, Bunnefeld L, Cabral JS, Etienne RS, Fritz SA, Gillespie R, Graham CH, Hagen O, Hartig F, Huang S et al. 2018. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends in Ecology & Evolution 34: 211-223.
R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/.
Regal PJ. 1982. Pollination by wind and animals: ecology of geographic patterns. Annual Review of Ecology and Systematics 13: 497-524.
Reyes E, Morlon H, Sauquet H. 2015. Presence in Mediterranean hotspots and floral symmetry affect speciation and extinction rates in Proteaceae. New Phytologist 207: 401-410.
Ricklefs RE. 2009. Aspect diversity in moths revisited. American Naturalist 173: 411-416.
Rohde K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514-527.
Rose JP, Kleist TJ, Löfstrand SD, Drew BT, Schönenberger J, Sytsma KJ. 2018. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Molecular Phylogenetics and Evolution 122: 59-79.
Roy K, Balch DP, Hellberg ME. 2001. Spatial patterns of morphological diversity across the Indo-Pacific: analyses using strombid gastropods. Proceedings of the Royal Society of London B: Biological Sciences 268: 2503-2508.
Roy K, Foote M. 1997. Morphological approaches to measuring biodiversity. Trends in Ecology & Evolution 12: 277-281.
Sauquet H. 2019. PROTEUS: a database for recording morphological data and fossil calibrations, v.1.27. [WWW document] URL http://eflower.myspecies.info/proteus.
Sazima I, Buzato S, Sazima M. 1993. The bizarre inflorescence of Norantea brasiliensis (Marcgraviaceae): visits of hovering and perching birds. Botanica Acta 106: 507-513.
Schleuning M, Fründ J, Klein AM, Abrahamczyk S, Alarcón R, Albrecht M, Andersson GKS, Bazarian S, Böhning-Gaese K, Bommarco R et al. 2012. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Current Biology 22: 1925-1931.
Schluter D, Pennell MW. 2017. Speciation gradients and the distribution of biodiversity. Nature 546: 48-55.
Schönenberger J, Anderberg AA, Sytsma KJ. 2005. Molecular phylogenetics and patterns of floral evolution in the Ericales. International Journal of Plant Sciences 166: 265-288.
Sneath PH, Sokal RR. 1973. Numerical taxonomy. The principles and practice of numerical classification. San Francisco, CA, USA: W. H. Freeman.
Stevens PF. 2001 onwards. Angiosperm phylogeny website, v.14. [WWW document] URL http://www.mobot.org/MOBOT/research/APweb/welcome.html.
Stevens RD, Tello JS. 2018. A latitudinal gradient in dimensionality of biodiversity. Ecography 41: 2016-2026.
Swenson NG. 2012. The functional ecology and diversity of tropical tree assemblages through space and time: from local to regional and from traits to transcriptomes. ISRN Forestry 2012: 743617.
Swenson NG, Enquist BJ. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany 94: 451-459.
Swenson NG, Enquist BJ, Pither J, Kerkhoff AJ, Boyle B, Weiser MD, Elser JJ, Fagan WF, Forero-Montana J, Fyllas N et al. 2012. The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography 21: 798-808.
Tomašových A, Kennedy JD, Betzner TJ, Kuehnle NB, Edie S, Kim S, Supriva K, White AE, Rahbek C, Huang S et al. 2016. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems. Proceedings of the Royal Society B: Biological Sciences 283: e20153027.
Trojelsgaard K, Olesen JM. 2013. Macroecology of pollination networks. Global Ecology and Biogeography 22: 149-162.
Vamosi JC, Vamosi SM. 2010. Key innovations within a geographical context in flowering plants: towards resolving Darwin’s abominable mystery. Ecology Letters 13: 1270-1279.
Vasconcelos TN, Chartier M, Prenner G, Martins AC, Schönenberger J, Wingler A, Lucas E. 2019. Floral uniformity through evolutionary time in a species-rich tree lineage. New Phytologist 221: 1597-1608.
Waser NM, Ollerton J, eds. 2006. Plant-pollinator interactions: from specialization to generalization. Chicago, IL, USA: University of Chicago Press.
Weiser MD, Swenson NG, Enquist BJ, Michaletz ST, Waide RB, Zhou J, Kaspari M. 2018. Taxonomic decomposition of the latitudinal gradient in species diversity of North American floras. Journal of Biogeography 45: 418-428.
Wills MA, Briggs DEG, Fortey RA. 1994. Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Paleobiology 20: 93-130.
Yumoto T, Momose K, Nagamasu H. 2000. A new pollination syndrome - squirrel pollination in a tropical rainforest in Lambir Hills National Park, Sarawak, Malaysia. Tropics 9: 147-151.
Zanne AE, Tank DC, Cornwell WK, Eastman JE, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Royer DL et al. 2014. Three keys to radiation of angiosperms into freezing environments. Nature 506: 89-92.
Contributed Indexing :
Keywords: Ericales*; angiosperms*; biodiversity*; disparity*; diversity*; flower morphology*; latitudinal gradient*; morphospace*
Entry Date(s) :
Date Created: 20210117 Latest Revision: 20210330
Update Code :
20210330
DOI :
10.1111/nph.17195
PMID :
33454991
Czasopismo naukowe
Morphological diversity (disparity) is an essential but often neglected aspect of biodiversity. Hence, it seems timely and promising to re-emphasize morphology in modern evolutionary studies. Disparity is a good proxy for the diversity of functions and interactions with the environment of a group of taxa. In addition, geographical and ecological patterns of disparity are crucial to understand organismal evolution and to guide biodiversity conservation efforts. Here, we analyse floral disparity across latitudinal intervals, growth forms, climate types, types of habitats, and regions for a large and representative sample of the angiosperm order Ericales. We find a latitudinal gradient of floral disparity and a decoupling of disparity from species richness. Other factors investigated are intercorrelated, and we find the highest disparity for tropical trees growing in African and South American forests. Explanations for the latitudinal gradient of floral disparity may involve the release of abiotic constraints and the increase of biotic interactions towards tropical latitudes, allowing tropical lineages to explore a broader area of the floral morphospace. Our study confirms the relevance of biodiversity parameters other than species richness and is consistent with the importance of species interactions in the tropics, in particular with respect to angiosperm flowers and their pollinators.
(© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies