Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Metabolic footprint analysis of volatile metabolites to discriminate between different key time points in the fermentation and storage of starter cultures and probiotic Lactobacillus casei Zhang milk.

Tytuł:
Metabolic footprint analysis of volatile metabolites to discriminate between different key time points in the fermentation and storage of starter cultures and probiotic Lactobacillus casei Zhang milk.
Autorzy:
Sun Y; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China.
Peng C; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China.
Wang J; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China.
Sun H; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China.
Guo S; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China.
Zhang H; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China. Electronic address: .
Źródło:
Journal of dairy science [J Dairy Sci] 2021 Mar; Vol. 104 (3), pp. 2553-2563. Date of Electronic Publication: 2021 Jan 15.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Champaign, IL : American Dairy Science Association
Original Publication: Lancaster, Pa. [etc.]
MeSH Terms:
Cultured Milk Products*
Lacticaseibacillus casei*
Probiotics*
Animals ; Fermentation ; Milk
Contributed Indexing:
Keywords: Lactobacillus casei Zhang; fermentation and storage; fermented milk; probiotics; volatile metabolites
Entry Date(s):
Date Created: 20210118 Date Completed: 20210414 Latest Revision: 20221207
Update Code:
20240105
DOI:
10.3168/jds.2020-18968
PMID:
33455777
Czasopismo naukowe
Interest has been growing in the co-fermentation of starter cultures with probiotic bacteria in milk. However, the representative metabolites and metabolic changes at different key time points during milk fermentation and storage in starter cultures and probiotic bacteria are still unclear. In this study, we used gas chromatography/mass spectrometry-based metabolomics to identify volatile metabolites and discriminate between 6 different time points [fermentation initiation (FI), fermentation curd (FC), fermentation termination (FT), storage 1 d (S1d), storage 7 d (S7d), and storage 14 d (S14d)] during the fermentation and storage of starter cultures and Lactobacillus casei Zhang milk. Of the 52 volatile metabolites identified, 15 contributed to discrimination of the 6 time points. Then, using the profile from the different time points, we analyzed pairwise comparisons (FI vs. FC; FC vs. FT; FT vs. S1d; S1d vs. S7d; S7d vs. S14d); these time-lapse comparisons showed metabolic progressions from one fermentation stage to the next. We found representative and exclusive metabolites at specific fermentation and storage time points. The greatest difference in metabolites occurred between FC and FT, and the metabolic profiles between S7d and S14d were most similar. Interestingly, decanoic acid, octanoic acid, and hexanoic acid reached their highest level at storage 14 d, indicating that the post-fermentation storage of fermented milk with L. casei Zhang may add more probiotic functions. This work provides detailed insight into the time-specific profiles of volatile metabolites and their dynamic changes; these data may be used for understanding and eventually predicting metabolic changes in milk fermentation and storage, where probiotic strains may be used.
(Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies