Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Can Some Anticancer Treatments Preserve the Ovarian Reserve?

Tytuł:
Can Some Anticancer Treatments Preserve the Ovarian Reserve?
Autorzy:
Vallet N; Department of Hematology and Cellular Therapy, Tours University Hospital, Tours, France.
Boissel N; Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France.; Paris University, Paris, France.
Elefant E; Centre de Référence sur les Agents Tératogènes (CRAT), Armand Trousseau Hospital, AP-, HP, Paris, France.; Faculty of Medicine, Sorbonne University, Paris, France.
Chevillon F; Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France.
Pasquer H; Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France.
Calvo C; Pediatric Hematology Department, Robert Debré Hospital, AP-, HP, Paris, France.
Dhedin N; Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France.
Poirot C; Department of Hematology, Adolescent and Young Adults Unit, Fertility Preservation, Saint Louis Hospital, AP-, HP, Paris, France.; Faculty of Medicine, Sorbonne University, Paris, France.
Źródło:
The oncologist [Oncologist] 2021 Jun; Vol. 26 (6), pp. 492-503. Date of Electronic Publication: 2021 Jan 29.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: 2022- : Oxford : Oxford University Press
Original Publication: Dayton, Ohio : AlphaMed Press, c1996-
MeSH Terms:
Fertility Preservation*
Ovarian Reserve*
Primary Ovarian Insufficiency*/chemically induced
Animals ; Female ; Glycogen Synthase Kinase 3 ; Humans ; Mice ; Ovarian Follicle ; Phosphatidylinositol 3-Kinases
References:
Biomed Pharmacother. 2019 Aug;116:108963. (PMID: 31125824)
Phytother Res. 2007 May;21(5):401-5. (PMID: 17295385)
Nat Biotechnol. 2007 Sep;25(9):1035-44. (PMID: 17721511)
J Clin Endocrinol Metab. 2020 Nov 1;105(11):. (PMID: 32770239)
Leuk Res. 2012 Mar;36(3):271-4. (PMID: 22018447)
Biochem Pharmacol. 2006 Nov 30;72(11):1423-31. (PMID: 16889755)
Reprod Biol. 2017 Mar;17(1):25-33. (PMID: 28040471)
Future Oncol. 2016 Jul;12(14):1699-711. (PMID: 27173589)
Kidney Int. 2001 Jan;59(1):3-16. (PMID: 11135052)
Biol Reprod. 2012 Mar 30;86(3):96. (PMID: 22190700)
J Clin Oncol. 2009 Jun 1;27(16):2677-85. (PMID: 19364965)
Heart. 2019 Nov;105(22):1695-1700. (PMID: 31337670)
PLoS One. 2013 Jul 29;8(7):e70117. (PMID: 23922929)
Hum Reprod. 2006 Sep;21(9):2223-7. (PMID: 16720622)
Fertil Steril. 2013 Jun;99(7):2045-54.e3. (PMID: 23453120)
Hum Reprod. 2018 Sep 1;33(9):1705-1714. (PMID: 30032281)
PLoS One. 2013;8(1):e53810. (PMID: 23326514)
Gene. 2013 Jul 1;523(1):82-7. (PMID: 23566837)
J Clin Oncol. 2013 Mar 1;31(7):903-9. (PMID: 23129737)
Cochrane Database Syst Rev. 2016 Apr 20;4:CD010816. (PMID: 27096326)
Curr Pharm Biotechnol. 2012 Aug;13(10):1949-56. (PMID: 22352729)
Nat Med. 2012 Aug;18(8):1172-4. (PMID: 22869180)
Hum Reprod. 2014 Jan;29(1):107-13. (PMID: 24221908)
PLoS One. 2014 Sep 24;9(9):e108174. (PMID: 25251158)
J Endocrinol Invest. 2016 Sep;39(9):983-90. (PMID: 27091671)
Hum Reprod Update. 2012 Sep-Oct;18(5):525-35. (PMID: 22647504)
Hum Reprod. 2019 Jun 4;34(6):1083-1094. (PMID: 31116405)
Arch Gynecol Obstet. 2016 Jun;293(6):1255-62. (PMID: 26530234)
Aging (Albany NY). 2011 Aug;3(8):782-93. (PMID: 21869459)
Reproduction. 2006 Jun;131(6):1007-15. (PMID: 16735540)
Hum Reprod. 2008 Mar;23(3):699-708. (PMID: 18192670)
Haematologica. 2019 Aug;104(8):e360-e363. (PMID: 30765476)
Sci Transl Med. 2013 May 15;5(185):185ra62. (PMID: 23677591)
PLoS One. 2016 Apr 01;11(4):e0152872. (PMID: 27035144)
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3186-3191. (PMID: 28270607)
Cancer. 2007 Nov 15;110(10):2222-9. (PMID: 17932880)
Nat Med. 2012 Aug;18(8):1170-2; author reply 1172-4. (PMID: 22869179)
Reprod Toxicol. 2020 Aug;95:66-74. (PMID: 32446930)
Adv Biol Regul. 2017 Aug;65:5-15. (PMID: 28712664)
Cell Death Differ. 2013 Aug;20(8):987-97. (PMID: 23598363)
PLoS One. 2015 Nov 06;10(11):e0142588. (PMID: 26544188)
J Neurooncol. 2019 Jul;143(3):573-581. (PMID: 31119479)
Bone Marrow Transplant. 2020 Jan;55(1):86-92. (PMID: 31413313)
J Clin Oncol. 2019 Jan 1;37(1):84-86. (PMID: 30407897)
FASEB J. 2019 Jan;33(1):1278-1287. (PMID: 30113879)
J Gynecol Oncol. 2016 Mar;27(2):e22. (PMID: 26768785)
Arch Pharm Res. 2017 Dec;40(12):1356-1379. (PMID: 29079968)
Nat Biotechnol. 2008 Jan;26(1):127-32. (PMID: 18183025)
PLoS One. 2011;6(9):e23492. (PMID: 21931602)
J Neurochem. 2008 Apr;105(1):192-202. (PMID: 18005231)
Lancet Oncol. 2019 May;20(5):649-662. (PMID: 30948276)
J Ovarian Res. 2018 Apr 26;11(1):33. (PMID: 29699594)
Hum Reprod. 2017 Jan;32(1):165-174. (PMID: 27923859)
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):E1688-E1697. (PMID: 28137855)
Science. 2008 Feb 1;319(5863):611-3. (PMID: 18239123)
Toxicol Sci. 2019 May 1;169(1):43-53. (PMID: 30657998)
Nat Med. 2009 Oct;15(10):1179-85. (PMID: 19783996)
Endocr Rev. 2009 Aug;30(5):438-64. (PMID: 19589950)
J Clin Oncol. 2018 Jul 1;36(19):1981-1990. (PMID: 29718793)
N Engl J Med. 2014 Mar 13;370(11):997-1007. (PMID: 24450857)
Cell Death Dis. 2018 Sep 20;9(10):943. (PMID: 30237472)
Ann Oncol. 2019 Nov 1;30(11):1760-1775. (PMID: 31418765)
Nat Med. 1996 May;2(5):561-6. (PMID: 8616716)
Cancer Res. 2001 Mar 15;61(6):2467-71. (PMID: 11289116)
Hum Reprod. 2018 May 1;33(5):844-859. (PMID: 29534229)
Mol Hum Reprod. 2018 Nov 1;24(11):533-542. (PMID: 30247637)
Lancet. 2012 Feb 11;379(9815):588. (PMID: 22325664)
Expert Rev Anticancer Ther. 2017 Feb;17(2):129-142. (PMID: 27967249)
Reprod Biomed Online. 2014 Nov;29(5):612-20. (PMID: 25246113)
Cancer Treat Rev. 2018 Sep;69:204-214. (PMID: 30092555)
Ann Oncol. 2020 Dec;31(12):1664-1678. (PMID: 32976936)
J Pharmacol Exp Ther. 2000 Oct;295(1):139-45. (PMID: 10991971)
N Engl J Med. 2002 Aug 15;347(7):472-80. (PMID: 12181401)
Cancer Res. 2007 Nov 1;67(21):10159-62. (PMID: 17974956)
Trends Endocrinol Metab. 2010 Feb;21(2):96-103. (PMID: 19913438)
J Clin Endocrinol Metab. 2017 Jul 1;102(7):2242-2250. (PMID: 28368472)
Reprod Domest Anim. 2018 Dec;53(6):1298-1305. (PMID: 30101992)
Reprod Biol Endocrinol. 2018 Oct 27;16(1):106. (PMID: 30368246)
J Ovarian Res. 2017 Aug 16;10(1):56. (PMID: 28814333)
Contributed Indexing:
Keywords: Cancer; Chemotherapy; Fertility preservation; Premature ovarian failure; Targeted therapy
Substance Nomenclature:
EC 2.7.11.26 (Glycogen Synthase Kinase 3)
Entry Date(s):
Date Created: 20210118 Date Completed: 20210705 Latest Revision: 20210705
Update Code:
20240105
PubMed Central ID:
PMC8176995
DOI:
10.1002/onco.13675
PMID:
33458904
Czasopismo naukowe
Background: Preventing premature ovarian failure (POF) is a major challenge in oncology. With conventional regimens, cytotoxicity-associated POF involves primordial follicles (PF) pool depletion by apoptosis or overactivation mechanisms, notably mediated by the ABL/TAp63 and PI3K/Akt/mTOR pathways. New anticancer treatments have been designed to target pathways implicated in tumor growth. Although concerns regarding fertility arise with these targeted therapies, we hypothesized that targeted therapies may exert off-tumor effects on PF that might delay POF. We provide an overview of evidence concerning these off-tumor effects on PF. Limitations and future potential implications of these findings are discussed.
Design: PubMed was searched by combining Boolean operators with the following keywords: fertility, ovarian, follicle, anti-tumoral, cancer, targeted, cytotoxic, and chemotherapy.
Results: Cisplatin-related PF apoptosis via the ABL/TAp63 pathway was targeted with a tyrosine kinase inhibitor, imatinib, in mice, but effects were recently challenged by findings on human ovarian xenografts in mice. In cyclophosphamide-treated mice, PI3K/Akt/mTOR pathway inhibition with mTOR inhibitors and AS101 preserved the PF pool. Proteasome and GSK3 inhibitors were evaluated for direct and indirect follicle DNA damage prevention. Surprisingly, evidence for cytotoxic drug association with PF pool preservation was found. We also describe selected non-anticancer molecules that may minimize gonadotoxicity.
Conclusion: Not all anticancer treatments are associated with POF, particularly since the advent of targeted therapies. The feasibility of associating a protective drug targeting PF exhaustion mechanisms with cytotoxic treatments should be evaluated, as a way of decreasing the need for conventional fertility preservation techniques. Further evaluations are required for transfer into clinical practice.
Implications for Practice: Anticancer therapies are associated with infertility in 10%-70% of patients, which is the result of primordial follicles pool depletion. Alone or associated with gonadotoxic treatments, some targeted therapies may exert favorable off-targets effects on the primordial follicle pool by slowing down their exhaustion. Current evidence of these effects relies on murine models or human in vitro models. Evaluation of these protective strategies in humans is challenging; however, if these results are confirmed with clinical and biological data, it not only could be a new approach to female fertility preservation but also would change standard fertility strategies.
(© 2021 AlphaMed Press.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies