Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Probiotic Composition and Chondroitin Sulfate Regulate TLR-2/4-Mediated NF-κB Inflammatory Pathway and Cartilage Metabolism in Experimental Osteoarthritis.

Tytuł :
Probiotic Composition and Chondroitin Sulfate Regulate TLR-2/4-Mediated NF-κB Inflammatory Pathway and Cartilage Metabolism in Experimental Osteoarthritis.
Autorzy :
Korotkyi O; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
Huet A; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
Dvorshchenko K; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
Kobyliak N; Bogomolets National Medical University, Kyiv, Ukraine. .; Laboratory of Pathology CSD, Kyiv, Ukraine. .
Falalyeyeva T; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
Ostapchenko L; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
Pokaż więcej
Źródło :
Probiotics and antimicrobial proteins [Probiotics Antimicrob Proteins] 2021 Jan 18. Date of Electronic Publication: 2021 Jan 18.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: New York, NY. : Springer
References :
Löfgren M, Svala E, Lindahl A, Skiöldebrand E, Ekman S (2018) Time-dependent changes in gene expression induced in vitro by interleukin-1β in equine articular cartilage. Res Vet Sci 118:466–476. https://doi.org/10.1016/j.rvsc.2018.04.013. (PMID: 10.1016/j.rvsc.2018.04.01329747133)
Dranitsina AS, Dvorshchenko KO, Korotkyi OH, Vovk AA, Falalyeyeva TM, Grebinyk DM, Ostapchenko LI (2019) Expression of Nos2 and Acan genes in rat knee articular cartilage in osteoarthritis. Cytol Genet 56(6):481–488. https://doi.org/10.3103/S0095452719060021. (PMID: 10.3103/S0095452719060021)
Wang F, Guo Z, Yuan Y (2020) STAT3 speeds up progression of osteoarthritis through NF-kB signaling pathway. Exp Ther Med 19(1):722–728. https://doi.org/10.3892/etm.2019.8268. (PMID: 10.3892/etm.2019.826831885710)
Chow YY, Chin K-Y (2020) The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072120/ . Accessed 02 March 2020. https://doi.org/10.1155/2020/8293921.
Liu Y-X, Wang G-D, Wang X, Zhang Y-L, Zhang T-L (2017) Effects of TLR-2/NF-kB signaling pathway on the occurrence of degenerative knee osteoarthritis: an in vivo and in vitro study. Oncotarget 19(1):722–728. https://doi.org/10.18632/oncotarget.16199.
Cancel M, Grimard G, Thuillard-Crisinel D, Moldovan F, Villemure I (2009) Effects of in vivo static compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix. Bone 44(2):306–315. https://doi.org/10.1016/j.bone.2008.09.005. (PMID: 10.1016/j.bone.2008.09.00518849019)
Mishra A, Awasthi S, Raj S, Mishra P, Srivastava RN (2019) Identifying the role of ASPN and COMP genes in knee osteoarthritis development. J Orthop Surg Res 14(1):337. https://doi.org/10.1186/s13018-019-1391-7. (PMID: 10.1186/s13018-019-1391-7316650486821012)
Korotkyi O, Dvorshchenko K, Falalyeyeva T, Sulaieva O, Kobyliak N, Abenavoli L, Fagoonee S, Pellicano R, Ostapchenko L (2020) Combined effects of probiotic and chondroprotector during osteoarthritis in rats. Panminerva Med 62(2): 93–101. https://doi.org/10.23736/S0031-0808.20.03841-0.
Korotkyi O, Vovk A, Galenova T, Vovk T, Dvorschenko K, Luzza F, Abenavoli L, Kobyliak N, Falalyeyeva T, Ostapchenko L (2019) Effect of probiotic on serum cytokines and matrix metalloproteinases profiles during monoiodoacetate-induced osteoarthritis in rats. Minerva Biotecnologica 31(2):68–73. https://doi.org/10.23736/S1120-4826.19.02548-5.
Korotkyi OH, Vovk AA, Halenova TI, Vovk TB, Dvorshchenko KO, Falalyeyeva TM, Ostapchenko LI (2020) Cytokines profile in knee cartilage of rats during monoiodoacetate-induced osteoarthritis and administration of probiotic. Biopolym Cell 36(1):23–35. https://doi.org/10.7124/bc.000A1E. (PMID: 10.7124/bc.000A1E)
Dranitsina AS, Dvorshchenko KO, Korotkyi OH, Vovk AA, Falalyeyeva TM, Grebinyk DM, Ostapchenko LI (2018) Expression of Ptgs2 and Tgfb1 genes in rat cartilage cells of the knee under conditions of osteoarthritis. Cytol Genet 52(3):192–197. https://doi.org/10.3103/S0095452718030039. (PMID: 10.3103/S0095452718030039)
Ota K, Quint P, Weivoda MM, Ruan M, Pederson L, Westendorf JJ, Khosla S, Oursler MJ (2013) Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 57(1):68–75. https://doi.org/10.1016/j.bone.2013.07.023. (PMID: 10.1016/j.bone.2013.07.02323891907)
Soki FN, Yoshida R, Paglia DN, Duong LT, Hansen MF, Drissi H (2018) Articular cartilage protection in Ctsk-/- Mice is associated with cellular and molecular changes in subchondral bone and cartilage matrix. J Cell Physiol 233(11):8666–8676. https://doi.org/10.1002/jcp.26745. (PMID: 10.1002/jcp.2674529781506)
Coffman FD (2008) Chitinase 3-Like-1 (CHI3L1): a putative disease marker at the interface of proteomics and glycomics. Crit Rev Clin Lab Sci 45(6):531–562. https://doi.org/10.1080/10408360802334743. (PMID: 10.1080/1040836080233474319003601)
Panaro MA, Corrado A, Benameur T, Paolo CF, Cici D, Porro C (2020) The emerging role of curcumin in the modulation of TLR-4 signaling pathway: focus on neuroprotective and anti-rheumatic properties. Int J Mol Sci 21(7):2299. https://doi.org/10.3390/ijms21072299. (PMID: 10.3390/ijms210722997177421)
Kim KW, Cho ML, Lee SH, Oh HJ, Kang CM, Ju JH, Min S-Y, Cho Y-G, Park S-H, Kim H-Y (2007) Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation. Immunol Lett 110:54–64. https://doi.org/10.1016/j.imlet.2007.03.004. (PMID: 10.1016/j.imlet.2007.03.00417467812)
Berthelot J-M, Sellam J, Maugars Y, Berenbaum F (2019) Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis. 2RMD Open 5(2):e001037. https://doi.org/10.1136/rmdopen-2019-001037.
Bobacz K, Sunk IG, Hofstaetter JG, Amoyo L, Toma CD, Akira S, Weichhart T, Saemann M, Smolen JS (2007) Toll-like receptors and chondrocytes: the lipopolysaccharide-induced decrease in cartilage matrix synthesis is dependent on the presence of toll-like receptor 4 and antagonized by bone morphogenetic protein 7. Arthritis Rheum 56(6):1880–1893. https://doi.org/10.1002/art.22637. (PMID: 10.1002/art.2263717530716)
Jimi E, Huang F, Nakatomi C (2019) NF-κB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci 20(24):6275. https://doi.org/10.3390/ijms20246275. (PMID: 10.3390/ijms202462756941088)
Choi M-Cg, Jo J, Park J, Kang HK, Park Y, (2019) NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells 8(7):734. https://doi.org/10.3390/cells8070734. (PMID: 10.3390/cells8070734)
Lepetsos P, Papavassiliou KA, Papavassiliou AG (2018) Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med 132:90–100. https://doi.org/10.1016/j.freeradbiomed.2018.09.025. (PMID: 10.1016/j.freeradbiomed.2018.09.02530236789)
Iolascon G, Gimigliano F, Moretti A, de Sire A, Migliore A, Brandi ML, Piscitelli P (2017) Early osteoarthritis: how to define, diagnose, and manage. A systematic review Eur Geriatr Med 8(5–6):383–396. https://doi.org/10.1016/j.eurger.2017.07.008. (PMID: 10.1016/j.eurger.2017.07.008)
Rabini A, de Sire A, Marzetti E, Gimigliano R, Ferriero G, Piazzini DB, Iolascon G, Gimigliano F (2015) Effects of focal muscle vibration on physical functioning in patients with knee osteoarthritis: a randomized controlled trial. Eur J Phys Rehabil Med 51(5):513–520 (PMID: 25990196). (PMID: 25990196)
Damiani C, Mangone M, Paoloni M, Goffredo M, Franceschini M, Servidio M, Pournajaf S, Santilli V, Agostini F, Bernetti A (2020) Trade-offs with rehabilitation effectiveness (REs) and efficiency (REy) in a sample of Italian disabled persons in a in post-acuity rehabilitation unit. Ann Ig 32(4):327–335. https://doi.org/10.7416/ai.2020.2356. (PMID: 10.7416/ai.2020.235632744291)
de Sire A, Stagno D, Minetto MA, Cisari C, Baricich A, Invernizzi M (2020) Long-term effects of intra-articular oxygen-ozone therapy versus hyaluronic acid in older people affected by knee osteoarthritis: a randomized single-blind extension study. J Back Musculoskelet Rehabil 33(3):347–354. https://doi.org/10.3233/BMR-181294. (PMID: 10.3233/BMR-18129432144974)
Bernetti A, Mangone M, Paolucci T, Santilli V, Verna S, Agostini F, Paoloni M (2020) Evaluation of the efficacy of intra-articular injective treatment with reticular hyaluronic acid (Mo.Re. Technology) in amateur athletes with over-use gonarthrosis. Med Sport 73:127–139.  https://doi.org/10.23736/S0025-7826.20.03648-0.
Santilli V, Mangone M, Paoloni M, Agostini F, Alviti F, Bernetti A (2018) Comment on Early efficacy of intra-articular HYADD 4 (Hymovis) injections for symptomatic knee osteoarthritis. Joints 6(2):131–132. https://doi.org/10.1055/s-0038-1660791. (PMID: 10.1055/s-0038-1660791300511126059854)
Henrotin Y, Marty M, Mobasheri A (2014) What is the current status of chondroitin sulfate and glucosamine for the treatment of knee osteoarthritis? Maturitas 78(3):184–187. https://doi.org/10.1016/j.maturitas.2014.04.015. (PMID: 10.1016/j.maturitas.2014.04.01524861964)
Hochberg MC, Zhan M, Langenberg P (2008) The rate of decline of joint space width in patients with osteoarthritis of the knee: a systematic review and meta-analysis of randomized placebo-controlled trials of chondroitin sulfate. Curr Med Res Opin 24(11):3029–3035. https://doi.org/10.1185/03007990802434932. (PMID: 10.1185/0300799080243493218826751)
Henrotin Y, Marty M, Sanchez C, Lambert C (2010) Chondroitin sulfate in the treatment of osteoarthritis: from in vitro studies to clinical recommendations. Ther Adv Musculoskelet Dis 2(6):335–348. https://doi.org/10.1177/1759720X10383076. (PMID: 10.1177/1759720X10383076228704593383492)
Tat SK, Pelletier J-P, Mineau F, Duval N, Martel-Pelletier J (2010) Variable effects of 3 different chondroitin sulfate compounds on human osteoarthritic cartilage/chondrocytes: relevance of purity and production process. J Rheumatol 37(3):656–664. https://doi.org/10.3899/jrheum.090696. (PMID: 10.3899/jrheum.09069620110528)
Roman-Blas JA, Mediero A, Tardío L, Portal-Nuñez S, Gratal P, Herrero-Beaumont G, Largo R (2017) The combined therapy with chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride does not improve joint damage in an experimental model of knee osteoarthritis in rabbits. Eur J Pharmacol 794:8–14. https://doi.org/10.1016/j.ejphar.2016.11.015. (PMID: 10.1016/j.ejphar.2016.11.01527845067)
Dranitsina AS, Dvorshchenko KO, Grebinyk DM, Ostapchenko LI (2016) The impact of oxidative stress on Par2, Ptgs2 genes expression in rat duodenal epithelial cells under conditions of prolonged gastric hypochlorhydria and with administration of multiprobiotic. J Appl Pharmac Sci 6(12):162–169. https://doi.org/10.7324/JAPS.2016.601223. (PMID: 10.7324/JAPS.2016.601223)
Szychlinska MA, Di Rosa M, Castorina A (2019) A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon 5:e01134. https://doi.org/10.1016/j.heliyon.2019.e01134. (PMID: 10.1016/j.heliyon.2019.e01134306715616330556)
de Sire A, de Sire R, Petito V, Masi L, Cisari C, Gasbarrini A, Scaldaferri F, Invernizzi M (2020) Gut-joint axis: the role of physical exercise on gut microbiota modulation in older people with osteoarthritis. Nutrients 12(2)pii: E574. https://doi.org/10.3390/nu12020574.
Liu F, Zhang N, Li Z, Wang X, Shi H, Xue C, Li R, Tang Q (2017) Chondroitin sulfate disaccharides modified the structure and function of the murine gut microbiome under healthy and stressed conditions. Sci Rep 7(1):67–83. https://doi.org/10.1038/s41598-017-05860-6. (PMID: 10.1038/s41598-017-05860-6)
Kobyliak N, Falalyeyeva T, Beregova T, Spivak M (2017) Probiotics for experimental obesity prevention: focus on strain dependence and viability of composition. Endokrynol Pol 68:659–667. https://doi.org/10.5603/EP.a2017.0055. (PMID: 10.5603/EP.a2017.005529022648)
Kobyliak N, Falalyeyeva T, Boyko N, Tsyryuk O, Beregova T, Ostapchenko L (2018) Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Res Clin Pract 141:190–199. https://doi.org/10.1016/j.diabres.2018.05.005. (PMID: 10.1016/j.diabres.2018.05.00529772287)
Kobyliak N, Falalyeyeva T, Tsyryuk O, Eslami M, Kyriienko D, Beregova T, Ostapchenko L (2020) New insights on strain-specific impacts of probiotics on insulin resistance: evidence from animal study. J Diabetes Metab Disord 19:289–296. https://doi.org/10.1007/s40200-020-00506-3. (PMID: 10.1007/s40200-020-00506-332550178)
Kobyliak N, Falalyeyeva T, Bodnar P, Beregova T (2017) Probiotics supplemented with omega-3 fatty acids are more effective for hepatic steatosis reduction in an animal model of obesity. Probiotics Antimicrob Proteins. 9:123–130. https://doi.org/10.1007/s12602-016-9230-1. (PMID: 10.1007/s12602-016-9230-127660157)
Kobyliak N, Abenavoli L, Falalyeyeva T, Beregova T (2018) Efficacy of probiotics and smectite in rats with non-alcoholic fatty liver disease. Ann Hepatol 17:153–161. https://doi.org/10.5604/01.3001.0010.7547. (PMID: 10.5604/01.3001.0010.754729311399)
Roman E, Nieto JC, Gely C, Vidal S, Pozuelo M, Poca M, Juarez C, Guarner C, Manichanh C, Soriano G (2019) Effect of a multistrain probiotic on cognitive function and risk of falls in patients with cirrhosis: A randomized trial. Hepatol Commun. Mar 12;3(5):632–645. https://doi.org/10.1002/hep4.1325.
Kobyliak N, Abenavoli L, Mykhalchyshyn G, Kononenko L, Boccuto L, Kyriienko D, Dynnyk O (2018) A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in NAFLD patients: evidence from a randomized clinical trial. J Gastrointestin Liver Dis 27(1):41–49. https://doi.org/10.15403/jgld.2014.1121.271.kby. (PMID: 10.15403/jgld.2014.1121.271.kby29557414)
Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Kyriienko D, Komissarenko I (2018) Effect of alive probiotic on insulin resistance in type 2 diabetes patients: randomized clinical trial. Diabetes Metab Syndr 12(5):617–624. https://doi.org/10.1016/j.dsx.2018.04.015. (PMID: 10.1016/j.dsx.2018.04.01529661605)
Kobyliak N, Abenavoli L, Falalyeyeva T, Mykhalchyshyn G, Boccuto L, Kononenko L, Kyriienko D, Komisarenko I, Dynnyk O (2018) Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: a randomized clinical study. Minerva Med 109(6):418–428. https://doi.org/10.23736/S0026-4806.18.05845-7. (PMID: 10.23736/S0026-4806.18.05845-730221912)
Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Molochek N, Savchuk O, Kyriienko D, Komisarenko I (2020) Probiotic and omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance, improves glycemia and obesity parameters in individuals with type 2 diabetes: a randomised controlled trial. Obesity Medicine 19:100248. https://doi.org/10.1016/j.obmed.2020.100248. (PMID: 10.1016/j.obmed.2020.100248)
Kobyliak N, Abenavoli L, Mykhalchyshyn G, Falalyeyeva T, Tsyryuk O, Kononenko L, Kyriienko D, Komisarenko I (2019) Probiotics and smectite absorbent gel formulation reduce liver stiffness, transaminase and cytokine levels in NAFLD associated with type 2 diabetes: a randomized clinical study. Clinical Diabetology 8:205–214. https://doi.org/10.5603/dk.2019.0016. (PMID: 10.5603/dk.2019.0016)
Abdollahi-Roodsaz S, Abramson SB, Scher JU (2016) The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat Rev Rheumatol 12:446–455. https://doi.org/10.1038/nrrheum.2016.68. (PMID: 10.1038/nrrheum.2016.6827256713)
Lei M, Guo C, Wang D, Zhang C, Hua L (2017) The effect of probiotic Lactobacillus casei Shirota on knee osteoarthritis: a randomised double-blind, placebo-controlled clinical trial. Benefic Microbiol 8(5):697–703. https://doi.org/10.3920/BM2016.0207. (PMID: 10.3920/BM2016.0207)
Saarela M (2019) Safety aspects of next generation probiotics. Current Opinion in Food Science 30:8–13. https://doi.org/10.1016/j.cofs.2018.09.001. (PMID: 10.1016/j.cofs.2018.09.001)
Kothari D, Patel S, Kim S-K (2019) Probiotic supplements might not be universally-effective and safe: a review. Biomed Pharmacother 111:537–547. https://doi.org/10.1016/j.biopha.2018.12.104. (PMID: 10.1016/j.biopha.2018.12.10430597307)
Korotkyi O, Kyriachenko Y, Kobyliak N, Falalyeyeva T, Ostapchenko L (2020) Crosstalk between gut microbiota and osteoarthritis: a critical view. J Funct Foods 68:103904. https://doi.org/10.1016/j.jff.2020.103904. (PMID: 10.1016/j.jff.2020.103904)
Korotkyi O, Dvorshchenko K, Vovk A, Dranitsina A, Tymoshenko M, Kot L, Ostapchenko L (2019) Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthritis. Ukr Biochem J 91(6):49–58. https://doi.org/10.15407/ubj91.06.049.
Korotkyi OH, Vovk AA, Dranitsina AS, Falalyeyeva TM, Dvorshchenko KO, Fagoonee S, Ostapchenko LI (2019) The influence of probiotic diet and chondroitin sulfate administration on Ptgs2, Tgfb1 and Col2a1 expression in rat knee cartilage during monoiodoacetate-induced osteoarthritis. Minerva Med 110(5):419–424. https://doi.org/10.23736/S0026-4806.19.06063-4.
Jacobs BY, Dunnigan K, Pires-Fernandes M, Allen KD (2017) Unique spatiotemporal and dynamic gaitcompensations in the rat monoiodoacetate injection and medial meniscus transection models of knee osteoarthritis. Osteoarthritis Cartilage 25(5):750–758. https://doi.org/10.1016/j.joca.2016.12.012. (PMID: 10.1016/j.joca.2016.12.01227986622)
Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1(2):581–585. https://doi.org/10.1038/nprot.2006.83. (PMID: 10.1038/nprot.2006.8317406285)
Livak EJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2 method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.1262)
Kruger NJ (2009) The Bradford method for protein quantitation. In: Walker JM (ed) The protein protocols handbook, 2nd edn. Humana Press, Totowa, New York, pp 17–24. (PMID: 10.1007/978-1-59745-198-7_4)
Zhang Q, Hui W, Litherland GJ, Barter MJ, Davidson R, Darrah C, Donell ST, Clark IM, Cawston TE, Robinson JH, Rowan AD, Young DA (2008) Differential toll-like receptor-dependent collagenase expression in chondrocytes. Ann Rheum Dis 67(11):1633–1641. https://doi.org/10.1136/ard.2007.079574. (PMID: 10.1136/ard.2007.07957418258708)
Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81(1):1–5. https://doi.org/10.1189/jlb.0306164. (PMID: 10.1189/jlb.030616417032697)
Li T, Chubinskaya S, Esposito A, Jin X, Tagliafierro L, Loeser R, Hakimiyan AA, Longobardi L, Ozkan H, Spagnoli A (2019) TGF-beta type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci Transl Med 11:eaan2585. https://doi.org/10.1126/scitranslmed.aan2585.
Chubinskaya S, Hakimiyan A, Pacione C, Yanke A, Rappoport L, Aigner T, Rueger DC, Loeser RF (2007) Synergistic effect of IGF-1 and OP-1 on matrix formation by normal and OA chondrocytes cultured in alginate beads. Osteoarthr Cartilage 15(4):421–430. https://doi.org/10.1016/j.joca.2006.10.004. (PMID: 10.1016/j.joca.2006.10.004)
Uchimura T, Foote AT, Smith EL, Matzkin EG, Zeng L (2015) Insulin-like growth factor II (IGF-II) inhibits il-1beta-induced cartilage matrix loss and promotes cartilage integrity in experimental osteoarthritis. J Cell Biochem 116:2858–2869. https://doi.org/10.1002/jcb.25232. (PMID: 10.1002/jcb.25232260152645630262)
Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. https://doi.org/10.1038/nri1391. (PMID: 10.1038/nri139115229469)
Rajaiah R, Perkins DJ, Ireland DDC, Vogel SN (2015) CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance. Proc Natl Acad Sci USA 112:8391–8396. https://doi.org/10.1073/pnas.1424980112. (PMID: 10.1073/pnas.142498011226106158)
Fekonja O, Avbelj M, Jerala R (2012) Suppression of TLR signaling by targeting TIR domaincontaining proteins. Curr Protein Pept Sci 13:776–788. https://doi.org/10.2174/138920312804871148. (PMID: 10.2174/138920312804871148233053643594740)
Yu L, Wang L, Chen S (2010) Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Me 14:2592–2603. https://doi.org/10.1111/j.1582-4934.2010.01127.x. (PMID: 10.1111/j.1582-4934.2010.01127.x)
Xu L, Sun C, Zhang S, Xu X, Zhai L, Wang Y, Wang S, Liu Z, Cheng H, Xiao M, Tao R, Zhang, (2015) Sam68 promotes NF-κB activation and apoptosis signaling in articular chondrocytes during osteoarthritis. Inflamm Res 64(11):895–902. https://doi.org/10.1007/s00011-015-0872-3. (PMID: 10.1007/s00011-015-0872-326350037)
Chen Q, Wu S, Wu Y, Chen L, Pang Q (2018) miR-149 suppresses the inflammatory response of chondrocytes in osteoarthritis by down-regulating the activation of TAK1/NF-κB. Biomed Pharmacother 101:763–768. https://doi.org/10.1016/j.biopha.2018.02.133. (PMID: 10.1016/j.biopha.2018.02.13329524885)
Sun SC (2017) The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol 17:545–558. https://doi.org/10.1038/nri.2017.52. (PMID: 10.1038/nri.2017.52285809575753586)
Ding Y, Wang L, Zhao Q, Wu Z, Kong L (2019) MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-κB signaling pathway. Int J Mol Med 43(2):779–790. https://doi.org/10.3892/ijmm.2018.4033. (PMID: 10.3892/ijmm.2018.403330569118)
Pelletier JP, Martel-Pelletier J, Abramson SB (2001) Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 44(6):1237–1247. https://doi.org/10.1002/1529-0131(200106)44:6%3c1237::AID-ART214%3e3.0.CO;2-F. (PMID: 10.1002/1529-0131(200106)44:6<1237::AID-ART214>3.0.CO;2-F11407681)
Chan PS, Caron JP, Rosa GJ, Orth MW (2005) Glucosamine and chondroitin sulfate regulate geneexpression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants. Osteoarthr Cartilage 13(5):387–394. https://doi.org/10.1016/j.joca.2005.01.003. (PMID: 10.1016/j.joca.2005.01.003)
Kwan TS, Pelletier J-P, Lajeunesse D, Fahmi H, Lavigne M, Martel-Pelletier J (2008) The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) in human osteoarthritic subchondral bone osteoblasts is an indicator of the metabolic state of these disease cells. Clin Exp Rheumatol 26(2):295–304.
Korotkyi O, Vovk A, Blokhina O, Dvorshchenko K, Falalyeyeva T, Abenavoli L, Ostapchenko L (2019) Effect of chondroitin sulfate on blood serum cytokine profile during carrageenan-induced edema and monoiodoacetate-induced osteoarthritis in rats. Rev Recent Clin Trials 14(1):50–55. https://doi.org/10.2174/1574887113666181102111247. (PMID: 10.2174/157488711366618110211124730387401)
Stabler TV, Huang Z, Montell E, Verges J, Kraus VB (2017) Chondroitin sulphate inhibits NF-ĸB activity induced by interaction of pathogenic and damageassociated molecules. Osteoarthr Cartilage 25(1):166–174. https://doi.org/10.1016/j.joca.2016.08.012. (PMID: 10.1016/j.joca.2016.08.012)
Collins KH, Paul HA, Reimer RA, Seerattan RA, Hart DA, Herzog W (2015) Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthr Cartilage 23:1989–1998. https://doi.org/10.1016/j.joca.2015.03.014. (PMID: 10.1016/j.joca.2015.03.014)
Amdekar S, Singh V, Kumar A, Sharma P, Singh R (2013) Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats. J Interfer Cytok Res 33(1):1–8. https://doi.org/10.1089/jir.2012.0034. (PMID: 10.1089/jir.2012.0034)
Korotkyi OH, Luhovska TV, Serhiychuk TM, Dvorshchenko KO, Falalyeyeva TM, Ostapchenko LI (2020) The gut microbiota of rats under experimental osteoarthritis and administration of chondroitin sulfate and probiotic. Mikrobiol Z 82(6):64–73. https://doi.org/10.15407/microbiolj82.06.064.
Kompanets I, Korotkiy A, Karpovets T, Ostapchenko L, Pilipenko S, Yankovskiy D. (2013) The interferon production and 2′,5′-oligoadenylate-synthetase activity in rat spleen lymphocytes at hypoacidity evoked by omeprazole injection and at administration of multiprobiotic «SYMBITER». Curr Issues Pharma Med Sci 26(4):398–400. https://doi.org/10.12923/j.2084-980X/26.4/a.10.
Kompanets IV, Korotkiy OG, Karpovets TP, Pilipenko SV, Nikolska VV, Ostapchenko LI et al (2013) Interferon titer and the 2’,5’-oligoadenylate-synthetase activity in rat thymus lymphocytes in conditions of omeprazol-caused hypergastrinemia. Bioplym Cell 29(1):64–69. https://doi.org/10.7124/bc.000807. (PMID: 10.7124/bc.000807)
Caviglia GP, Rosso C, Ribaldone DG, Dughera F, Fagoonee S, Astegiano M, Pellicano R (2019) Physiopathology of intestinal barrier and the role of zonulin. Minerva Biotecnol 31:83–92. https://doi.org/10.23736/S1120-4826.19.02554-0.
Korotkyi O, Vovk A, Kuryk O, Dvorshchenko K, Falalyeyeva T, Ostapchenko L. (2018) Co-administration of live probiotics with chondroprotector in management of experimental knee osteoarthritis. Georgian Med News (279):191–196. https://pubmed.ncbi.nlm.nih.gov/30035745.
Contributed Indexing :
Keywords: Biochemical markers of cartilage metabolism; Chondroprotector; Cytokines; Dysbiosis; Inflammation; Toll-like receptors
Entry Date(s) :
Date Created: 20210118 Latest Revision: 20210118
Update Code :
20210210
DOI :
10.1007/s12602-020-09735-7
PMID :
33459997
Czasopismo naukowe
The therapeutic potential of using probiotics to treat osteoarthritis (OA) has only recently been recognized, with a small number of animal and human studies having been undertaken. The aim of this study was to describe the effect of a probiotic composition (PB) and chondroitin sulfate (CS), administered separately or in combination, on Tlr2, Tlr4, Nfkb1, and Comp gene expression in cartilage and levels of cytokines (IL-6, IL-8, TGF-β1, IGF-1) and COMP, ACAN, CHI3L1, CTSK, and TLR-2 in serum during monoiodoacetate (MIA)-induced OA in rats. Expression of Tlr2, Tlr4, Nfkb1, and Comp in cartilage was analyzed using one-step SYBR Green real-time RT-PCR. The levels of IL-6, IL-8, TGF-β1, IGF-1, COMP, ACAN, CHI3L1, CTSK, and TLR-2 were measured in serum by enzyme-linked immunosorbent assay. Experimental OA caused an upregulation in Tlr2, Tlr4, Nfkb1, and downregulation of Comp expression in the cartilage. MIA-OA caused a significant increase of TLR-2 soluble form and IL-6, IL-8, TGF-β1, COMP, ACAN, CHI3L1, and CTSK levels in the blood serum; the level of IGF-1, on contrary, decreased. Separate administration of PB and CS raised expression of Comp and reduced Tlr2, Tlr4, and Nfkb1 expressions in cartilage. The levels of the studied markers of cartilage metabolism in serum were decreased or increased (IGF-1). The combined use of PB and CS was more effective than separate application approaching above-mentioned parameters to control. The outcomes of our research prove that multistrain live probiotic composition amplifies the positive action of CS in osteoarthritis attenuation and necessitates further investigation with large-scale randomized controlled trial.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies