Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Bilateral asymmetry and developmental plasticity of the humerus in modern humans.

Tytuł:
Bilateral asymmetry and developmental plasticity of the humerus in modern humans.
Autorzy:
Zelazny KG; Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Sylvester AD; Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Ruff CB; Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Źródło:
American journal of physical anthropology [Am J Phys Anthropol] 2021 Mar; Vol. 174 (3), pp. 418-433. Date of Electronic Publication: 2021 Jan 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Hoboken, NJ : Wiley-Blackwell
Original Publication: Hoboken, NJ : Wiley
MeSH Terms:
Humerus/*anatomy & histology
Humerus/*physiology
Adult ; Anatomy, Cross-Sectional ; Anthropology, Physical ; Biomechanical Phenomena/physiology ; Diaphyses/anatomy & histology ; Diaphyses/physiology ; Female ; Functional Laterality/physiology ; Humans ; Male
References:
Acsádi, G., & Nemeskéri, J. (1970). History of human life span and mortality. Akadémiai Kiadó.
Aldred, C. (1962). The egyptians. Thames and Hudson.
Asch, D. L., & Asch, N. B. (1985). Prehistoric plant cultivation in west-central Illinois in prehistoric food production in North America. Anthropological Papers, 75, 149-203.
Asch, D. L., Farnsworth, K. B., & Asch, N. B. (1979). Woodland subsistence and settlement in west central Illinois (pp. 80-85). Hopewell Archaeology: The Chillicothe Conference.
Auerbach, B. M., & Ruff, C. B. (2006). Limb bone bilateral asymmetry: Variability and commonality among modern humans. Journal of Human Evolution, 50(2), 203-218. https://doi.org/10.1016/j.jhevol.2005.09.004.
Bacon, A.-M. (2000). Principal components analysis of distal humeral shape in Pliocene to recent African hominids: The contribution of geometric morphometrics. American Journal of Physical Anthropology, 111(4), 479-487.
Bass, S. L., Saxon, L., Daly, R. M., Turner, C. H., Robling, A. G., Seeman, E., & Stuckey, S. (2002). The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: A study in tennis players. Journal of Bone and Mineral Research, 17(12), 2274-2280. https://doi.org/10.1359/jbmr.2002.17.12.2274.
Bertram, J. E. A., & Biewener, A. A. (1988). Bone curvature: Sacrificing strength for load predictability? Journal of Theoretical Biology, 131(1), 75-92. https://doi.org/10.1016/S0022-5193(88)80122-X.
Blackburn, A. (2011). Bilateral asymmetry of the humerus during growth and development. American Journal of Physical Anthropology, 145(4), 639-646. https://doi.org/10.1002/ajpa.21555.
Blackburn, A., & Knüsel, C. J. (2006). Hand dominance and bilateral asymmetry of the epicondylar breadth of the humerus: A test in a living sample. Current Anthropology, 47(2), 377-382. https://doi.org/10.1086/503067.
Blitz, J. H. (1988). Adoption of the bow in prehistoric North America. North American Archaeologist, 9(2), 123-145. https://doi.org/10.2190/hn64-p1ud-nm0a-j0lr.
Bookstein, F. L. (1992). Morphometric tools for landmark data: Geometry and biology. Cambridge University Press.
Bouvier, M., & Hylander, W. L. (1982). The effect of dietary consistency on morphology of the mandibular condylar cartilage in young macaques (Macaca mulatta). Progress in Clinical and Biological Research, 101, 569-579.
Bridges, P. S. (1991). Skeletal evidence of changes in subsistence activities between the Archaic and Mississippian time periods in northwestern Alabama. In M. L. Powell & P. S. Bridges (Eds.), What mean these bones? Studies in Southeastern bioarchaeology (pp. 89-101). Alabama University Press.
Bridges, P. S., Blitz, J. H., & Solano, M. C. (2000). Changes in long bone diaphyseal strength with horticultural intensification in west-central Illinois. American Journal of Physical Anthropology, 112(2), 217-238.
Brooks, S., & Suchey, J. M. (1990). Skeletal age determination based on the os pubis: A comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Human Evolution, 5(3), 227-238.
Brothwell, D. R. (1981). Digging up bones: The excavation, treatment, and study of human skeletal remains. Cornell University Press.
Buikstra, J. E., & Ubelaker, D. H. (Eds.) (1994). . In Standards for data collection from human skeletal remains, Arkansas Archaeological Survey Research Series, (Vol. 44, Fayetteville: ).Arkansas Archaeological Survey.
Burr, D. B. (1997). Between muscle force and age-related bone loss. Journal of Bone and Mineral Research, 12(10), 1547-1551. https://doi.org/10.1359/jbmr.1997.12.10.1547.
Canington, S. L., Sylvester, A. D., Burgess, M. L., Junno, J. A., & Ruff, C. B. (2018). Long bone diaphyseal shape follows different ontogenetic trajectories in captive and wild gorillas. American Journal of Physical Anthropology, 167(2), 366-376. https://doi.org/10.1002/ajpa.23636.
Chadwick, E. K. J., & Nicol, A. C. (2000). Elbow and wrist joint contact forces during occupational pick and place activities. Journal of Biomechanics, 33(5), 591-600. https://doi.org/10.1016/S0021-9290(99)00184-0.
Conner, M. D. (1990). Population structure and skeletal variation in the late woodland of west-central Illinois. American Journal of Physical Anthropology, 82(1), 31-43. https://doi.org/10.1002/ajpa.1330820105.
Currey, J. D. (2002). Bones: Structure and mechanics. Princeton University Press.
Daegling, D. J. (2002). Estimation of torsional rigidity in primate long bones. Journal of Human Evolution, 43(2), 229-239. https://doi.org/10.1006/jhev.2002.0574.
Dequeker, J., Ortner, D. J., Stix, A. I., Cheng, X.-G., Brys, P., & Boonen, S. (1997). Hip fracture and osteoporosis in a XIIth dynasty female skeleton from Lisht, Upper Egypt. Journal of Bone and Mineral Research, 12(6), 881-888. https://doi.org/10.1359/jbmr.1997.12.6.881.
Feldesman, M. R. (1982). Morphometric analysis of the distal humerus of some Cenozoic catarrhines: The late divergence hypothesis revisited. American Journal of Physical Anthropology, 59(1), 73-95. https://doi.org/10.1002/ajpa.1330590108.
Ferretti, J. L., Capozza, R. F., & Zanchetta, J. R. (1996). Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone, 18(2), 97-102. https://doi.org/10.1016/8756-3282(95)00438-6.
Frost, H. M. M. D. (1979). A chondral modeling theory. Calcified Tissue International, 28, 181-200.
Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern Morphometrics in physical anthropology (pp. 73-98). Kluwer Academic/Plenum Publishers.
Haapasalo, H., Kontulainen, S., Sievänen, H., Kannus, P., Järvinen, M., & Vuori, I. (2000). Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: A peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone, 27(3), 351-357. https://doi.org/10.1016/S8756-3282(00)00331-8.
Hallgrímsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, developmental stability, and morphological integration in primate limbs. Yearbook of Physical Anthropology, 45, 131-158. https://doi.org/10.1002/ajpa.10182.
Hamilton, M. E. (1982). Sexual dimorphism in skeletal samples. In R. L. Hall (Ed.), Sexual dimorphism in Homo sapiens: A question of size (pp. 107-163). Praeger.
Hamrick, M. W. (1996). Articular size and curvature as determinants of carpal joint mobility and stability in strepsirhine primates. Journal of Morphology, 230(2), 113-127. https://doi.org/10.1002/(SICI)1097-4687(199611)230:2<113::AID-JMOR1>3.0.CO;2-I.
Hamrick, M. W. (1999). A chondral modeling theory revisited. Journal of Theoretical Biology, 201(3), 201-208. https://doi.org/10.1006/jtbi.1999.1025.
Hewett, E. L. (1904). Archeology of Pajarito Park, New Mexico. American Anthropologist, 6(5), 629-659.
Holliday, T. W., & Friedl, L. (2013). Hominoid humeral morphology: 3D morphometric analysis. American Journal of Physical Anthropology, 152(4), 506-515. https://doi.org/10.1002/ajpa.22385.
Hunt, D. R., & Albanese, J. (2005). History and demographic composition of the Robert J. Terry anatomical collection. American Journal of Physical Anthropology, 127(4), 406-417. https://doi.org/10.1002/ajpa.20135.
Johannessen, S. (1984). Paleoethnobotany. C. J. Bareis & J. W. Porter American Bottom Archaeology, 197-214). Urbana: University of Illinois Press.
Johnston, F. E., & Snow, C. E. (1961). The reassessment of the age and sex of the Indian Knoll skeletal population: Demographic and methodological aspects. American Journal of Physical Anthropology, 19(3), 237-244. https://doi.org/10.1002/ajpa.1330190304.
Jones, H. H., Priest, J. D., Hayes, W. C., Tichenor, C. C., & Nagel, D. A. (1977). Humeral hypertrophy in response to exercise. The Journal of Bone and Joint Surgery, 59(2), 204-208.
Lague, M. R. (2014). The pattern of hominin postcranial evolution reconsidered in light of size-related shape variation of the distal humerus. Journal of Human Evolution, 75, 90-109. https://doi.org/10.1016/j.jhevol.2014.07.003.
Lague, M. R. (2015). Taxonomic identification of lower Pleistocene fossil hominins based on distal humeral diaphyseal cross-sectional shape. PeerJ, 3, e1084. https://doi.org/10.7717/peerj.1084.
Lague, M. R., Chirchir, H., Green, D. J., Mbua, E., Harris, J. W. K., Braun, D. R., Griffin, N. L., & Richmond, B. G. (2019). Humeral anatomy of the KNM-ER 47000 upper limb skeleton from Ileret, Kenya: Implications for taxonomic identification. Journal of Human Evolution, 126, 24-38. https://doi.org/10.1016/j.jhevol.2018.06.011.
Larsen, C. S. (2015). Bioarchaeology: Interpreting behavior from the human skeleton (2nd ed.). Cambridge University Press.
Lieberman, D. E., Devlin, M. J., & Pearson, O. M. (2001). Articular area responses to mechanical loading: Effects of exercise, age, and skeletal location. American Journal of Physical Anthropology, 116(4), 266-277.
Lovejoy, C. O., Meindul, R. S., Pryzback, T. R., & Mensforth, P. (1985). Chronological metamorphosis of the auricular surface of the ilium: A new method for the determination of adult skeletal age at death. American Journal of Physical Anthropology, 68, 15-28.
Lythgoe, A. M. (1907). The Egyptian expedition: III. The Metropolitan Museum of Art Bulletin, 2(10), 163-169.
Lythgoe, A. M. (1908). The Egyptian expedition: II. The season's work at the pyramids of Lisht. The Metropolitan Museum of Art Bulletin, 3(9), 170-173.
Mace, A. C. (1921). The Egyptian expedition 1920-1921: I. Excavations at Lisht. The Metropolitan Museum of Art Bulletin, 16(11), 5-19.
Mace, A. C., & Winlock, H. E. (1916). The Metropolitan Museum of art Egyptian expedition: The tomb of Senebtisi at Lisht. The Metropolitan Museum of Art.
Martin, D. E., Severns, A. E., & Kabo, J. M. (2004). Determination of mechanical stiffness of bone by pQCT measurements: Correlation with non-destructive mechanical four-point bending test data. Journal of Biomechanics, 37(8), 1289-1293. https://doi.org/10.1016/j.jbiomech.2003.12.009.
Martin, R., & Saller, K. (1957). Lehrbuch der Anthropologie. Gustav Fischer Verlag.
Mays, S. A. (2002). Asymmetry in metacarpal cortical bone in a collection of British post-mediaeval human skeletons. Journal of Archaeological Science, 29(4), 435-441. https://doi.org/10.1006/jasc.2002.0729.
Milner, G. R. (1992). Determination of skeletal age and sex: A manual prepared for the Dickson mounds reburial team. Dickson Mounds Museum.
Moisio, K. C., Podolskaya, G., Barnhart, B., Berzins, A., & Sumner, D. R. (2003). pQCT provides better prediction of canine femur breaking load than does DXA. Journal of Musculoskeletal Neuronal Interactions, 3(3), 240-245.
Morey, D. F., Crothers, G. M., Stein, J. K., Fenton, J. P., & Herrmann, N. P. (2002). The fluvial and geomorphic context of Indian knoll, an archaic shell midden in west-Central Kentucky. Geoarchaeology: An International Journal, 17(6), 521-553. https://doi.org/10.1002/gea.10027.
Nadell, J. A., & Shaw, C. N. (2016). Phenotypic plasticity and constraint along the upper and lower limb diaphyses of Homo sapiens. American Journal of Physical Anthropology, 159(3), 410-422. https://doi.org/10.1002/ajpa.22889.
Pearson, O. M., & Lieberman, D. E. (2004). The aging of Wolff's “law”: Ontogeny and responses to mechanical loading in cortical bone. Yearbook of Physical Anthropology, 47, 63-99. https://doi.org/10.1002/ajpa.20155.
Phenice, T. W. (1969). A newly developed visual method of sexing the os pubis. American Journal of Physical Anthropology, 30(2), 397-302.
Piziali, R. L., Hight, T. K., & Nagel, D. A. (1976). An extended structural analysis of long bones-application to the human tibia. Journal of Biomechanics, 9(11), 695-701. https://doi.org/10.1016/0021-9290(76)90171-8.
Plochocki, J. H. (2004). Bilateral variation in limb articular surface dimensions. American Journal of Human Biology, 16(3), 328-333. https://doi.org/10.1002/ajhb.20023.
Radin, E. L., Orr, R. B., Kelman, J. L., Paul, I. L., & Rose, R. M. (1982). Effect of prolonged walking on concrete on the knees of sheep. Journal of Biomechanics, 15(7), 487-492. https://doi.org/10.1016/0021-9290(82)90002-1.
Rafferty, K. L., & Ruff, C. B. (1994). Articular structure and function in Hylobates, colobus, and Papio. American Journal of Physical Anthropology, 94(3), 395-408. https://doi.org/10.1002/ajpa.1330940308.
Rohlf, F. J., & Slice, D. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40-59. https://doi.org/10.2307/2992207.
Rohn, A. H., & Ferguson, W. M. (2006). Puebloan ruins of the southwest. UNM Press.
Rothschild, N. (1979). Mortuary behavior and social organization at Indian knoll and Dickson mounds. American Antiquity, 44(4), 658-675.
Roy, T. A., Ruff, C. B., & Plato, C. C. (1994). Hand dominance and bilateral asymmetry in the structure of the second metacarpal. American Journal of Physical Anthropology, 94(2), 203-211. https://doi.org/10.1002/ajpa.1330940205.
Ruff, C. B. (2002). Long bone articular and diaphyseal structure in old world monkeys and apes. I: Locomotor effects. American Journal of Physical Anthropology, 119(4), 305-342. https://doi.org/10.1002/ajpa.10117.
Ruff, C. B. (2003a). Growth in bone strength, body size, and muscle size in a juvenile longitudinal sample. Bone, 33(3), 317-329. https://doi.org/10.1016/S8756-3282(03)00161-3.
Ruff, C. B. (2003b). Ontogenetic adaptation to bipedalism: Age changes in femoral to humeral length and strength proportions in humans, with a comparison to baboons. Journal of Human Evolution, 45(4), 317-349. https://doi.org/10.1016/j.jhevol.2003.08.006.
Ruff, C. B. (2008). Femoral/humeral strength in early African Homo erectus. Journal of Human Evolution, 54(3), 383-390. https://doi.org/10.1016/j.jhevol.2007.09.001.
Ruff, C. B. (2009). Relative limb strength and locomotion in Homo habilis. American Journal of Physical Anthropology, 138(1), 90-100. https://doi.org/10.1002/ajpa.20907.
Ruff, C. B. (2019). Biomechanical analyses of archaeological human skeletons. In M. A. Katzenberg & A. L. Grauer (Eds.), Biological Anthropology of the Human Skeleton (3rd ed., pp. 189-224). John Wiley & Sons, Inc..
Ruff, C. B., Burgess, M. L., Bromage, T. G., Mudakikwa, A., & McFarlin, S. C. (2013). Ontogenetic changes in limb bone structural proportions in mountain gorillas (gorilla beringei beringei). Journal of Human Evolution, 65(6), 693-703. https://doi.org/10.1016/j.jhevol.2013.06.008.
Ruff, C. B., Burgess, M. L., Junno, J.-A., Mudakikwa, A., Zollikofer, C. P. E., Ponce de León, M. S., & Mcfarlin, S. C. (2018). Phylogenetic and environmental effects on limb bone structure in gorillas. American Journal of Physical Anthropology, October, 2017, 353-372. https://doi.org/10.1002/ajpa.23437.
Ruff, C. B., Burgess, M. L., Ketcham, R. A., & Kappelman, J. (2016). Limb bone structural proportions and locomotor behavior in a.L. 288-1 (“Lucy”). PLoS One, 11(11), 1-26. https://doi.org/10.1371/journal.pone.0166095.
Ruff, C. B., Harper, C. M., Goldstein, D. M., Daegling, D. J., & McGraw, W. S. (2019). Long bone structural proportions and locomotor behavior in Cercopithecidae. Journal of Human Evolution, 132, 47-60. https://doi.org/10.1016/j.jhevol.2019.04.003.
Ruff, C. B., Higgins, R., & Carlson, K. J. (2020). Long bone cross-sectional geometry. In B. Zipfel, C. V. Ward, & B. G. Richmond (Eds.), Hominin postcranial remains from Sterkfontein, South Africa, 1936-1995 (pp. 307-320). Oxford University Press.
Ruff, C. B., Holt, B. M., & Trinkaus, E. (2006). Who's afraid of the big bad Wolff?: “Wolff's law” and bone functional adaptation. American Journal of Physical Anthropology, 129(4), 484-498. https://doi.org/10.1002/ajpa.20371.
Ruff, C. B., Scott, W. W., & Liu, A. Y.-C. (1991). Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults. American Journal of Physical Anthropology, 86(3), 397-413. https://doi.org/10.1002/ajpa.1330860306.
Rybicki, E. F., Simonen, F. A., & Weis, E. B. (1972). On the mathematical analysis of stress in the human femur. Journal of Biomechanics, 5(2), 203-215. https://doi.org/10.1016/0021-9290(72)90056-5.
Sarringhaus, L. A., MacLatchy, L. M., & Mitani, J. C. (2016). Long bone cross-sectional properties reflect changes in locomotor behavior in developing chimpanzees. American Journal of Physical Anthropology, 160(1), 16-29. https://doi.org/10.1002/ajpa.22930.
Sarringhaus, L. A., Stock, J. T., Marchant, L. F., & McGrew, W. C. (2005). Bilateral asymmetry in the limb bones of the chimpanzee (Pan troglodytes). American Journal of Physical Anthropology, 128(4), 840-845. https://doi.org/10.1002/ajpa.20190.
Schmitt, D., Churchill, S. E., & Hylander, W. L. (2003). Experimental evidence concerning spear use in Neandertals and early modern humans. Journal of Archaeological Science, 30(1), 103-114. https://doi.org/10.1006/jasc.2001.0814.
Senut, B. (1980). New data on the humerus and its joints in Plio-Pleistocene hominids. Collegium Anthropologicum, 4(1), 87-93.
Senut, B. (1981). Humeral outlines in some hominoid primates and in Plio-Pleistocene hominids. American Journal of Physical Anthropology, 56(3), 275-283. https://doi.org/10.1002/ajpa.1330560307.
Senut, B., & Tardieu, C. (1985). Functional aspects of Plio-Pleistocene hominid limb bones: Implications for taxonomy and phylogeny. In E. Delson (Ed.), Ancestors: The hard evidence (pp. 193-201). Alan R. Liss, Inc.
Shaw, C. N. (2011). Is ‘hand preference’ coded in the hominin skeleton? An in-vivo study of bilateral morphological variation. Journal of Human Evolution, 61(4), 480-487. https://doi.org/10.1016/j.jhevol.2011.06.004.
Shaw, C. N., & Stock, J. T. (2009). Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes. American Journal of Physical Anthropology, 140(1), 160-172. https://doi.org/10.1002/ajpa.21063.
Sladék, V., Berner, M., Sosna, D., & Sailer, R. (2007). Human manipulative behavior in the central European late Eneolithic and early bronze age: Humeral bilateral asymmetry. American Journal of Physical Anthropology, 133(1), 669-681. https://doi.org/10.1002/ajpa.
Sládek, V., Ruff, C. B., Berner, M., Holt, B. M., Niskanen, M., Schuplerová, E., & Hora, M. (2016). The impact of subsistence changes on humeral bilateral asymmetry in terminal Pleistocene and Holocene Europe. Journal of Human Evolution, 92, 37-49. https://doi.org/10.1016/j.jhevol.2015.12.001.
Steele, J., & Mays, S. (1995). Handedness and directional asymmetry in the long bones of the human upper limb. International Journal of Osteoarchaeology, 5(1), 39-49. https://doi.org/10.1002/oa.1390050105.
Susman, R. L., de Ruiter, D. J., & Brain, C. K. (2001). Recently identified postcranial remains of Paranthropus and early homo from Swartkrans cave, South Africa. Journal of Human Evolution, 41(6), 607-629. https://doi.org/10.1006/jhev.2001.0510.
Sylvester, A. D. (2013). A geometric morphometric analysis of the medial tibial condyle of African hominids. Anatomical Record, 296(10), 1518-1525. https://doi.org/10.1002/ar.22762.
Tallman, M. (2013). Forelimb to Hindlimb shape covariance in extant hominoids and fossil hominins. Anatomical Record, 296(2), 290-304. https://doi.org/10.1002/ar.22624.
Titterington, P. F. (1935). Certain bluff mounds of western Jersey County, Illinois. American Antiquity, 1(1), 6-46.
Titterington, P. F. (1943). Titterington reports extensive classification of materials from Jersey County burial sites. Journal of the Illinois State Archaeological Society, 1(1), 19-21.
Titterington, P. F., & McKern, W. C. (1943). The Jersey County, Illinois, bluff focus. American Antiquity, 9(2), 240-245.
Trinkaus, E., Churchill, S. E., & Ruff, C. B. (1994). Postcranial robusticity in homo. II: Humeral bilateral asymmetry and bone plasticity. American Journal of Physical Anthropology, 93(1), 1-34. https://doi.org/10.1002/ajpa.1330930102.
Ward, C. V. (2002). Interpreting the posture and locomotion of Australopithecus afarensis: Where do we stand? Yearbook of Physical Anthropology, 45, 185-215. https://doi.org/10.1002/ajpa.10185.
Warden, S. J., Roosa, S. M. M., Kersh, M. E., Hurd, A. L., Fleisig, G. S., Pandy, M. G., & Fuchs, R. K. (2014). Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5337-5342. https://doi.org/10.1073/pnas.1321605111.
Webb, W. S. (1946). Indian Knoll, Site Oh2, Ohio County, Kentucky. In The University of Kentucky Reports in Anthropology and Archaeology (Vol. 4). University of Kentucky.
Wenke, R. J. (1989). Egypt: Origins of complex societies. Annual Review of Anthropology, 18, 129-155.
Contributed Indexing:
Keywords: bilateral asymmetry; diaphysis; epiphysis; handedness; metaphysis
Entry Date(s):
Date Created: 20210118 Date Completed: 20210330 Latest Revision: 20210330
Update Code:
20240105
DOI:
10.1002/ajpa.24213
PMID:
33460465
Czasopismo naukowe
Objective: This study investigates bilateral asymmetry in the humerus of modern human populations with differing activity patterns to assess the relative plasticity of different bone regions in response to environmental influences, particularly the biomechanical demands of handedness.
Methods: External breadths, cross-sectional properties, and centroid sizes were used to quantify directional and absolute asymmetry of humeral diaphyseal, distal periarticular, and articular regions in six populations with differing subsistence strategies (total n = 244). Geometric section properties were measured using computed tomography at six locations along the distal humerus, while centroid sizes of the distal articular and periarticular regions, as well as eight segments of the diaphysis, were extracted from external landmark data. Bilateral asymmetries were compared between populations and sexes. Each property was also tested for correlation with bilateral asymmetry at 40% of bone length, which has been shown to correlate with handedness.
Results: Asymmetry is highest in the diaphysis, but significant through all distal bone regions. Asymmetry increases in the region of the deltoid tuberosity, and progressively declines distally through the shaft and distal periarticular region. Articular asymmetry is higher than periarticular asymmetry, approaching levels seen just proximal to the olecranon fossa, and is weakly but significantly correlated with diaphyseal asymmetry. Hunter-gatherers from Indian Knoll have significantly higher levels of asymmetry than other groups and are more sexually dimorphic, particularly in cross-sectional properties of the diaphysis.
Conclusions: Humeral dimensions throughout the diaphysis, including regions currently used in taxonomic assignments of fossil hominins, likely respond to in vivo use, including population and sex-specific behaviors.
(© 2021 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies