Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A novel evaluation method for Ki-67 immunostaining in paraffin-embedded tissues.

Tytuł:
A novel evaluation method for Ki-67 immunostaining in paraffin-embedded tissues.
Autorzy:
Dias EP; Unidade Integrada de Patologia Especializada (UniPE), Postgraduate Program in Pathology, Pathological Anatomy Service of Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, 23033-900, Brazil. .; Department of Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil. .
Oliveira NSC; Unidade Integrada de Patologia Especializada (UniPE), Postgraduate Program in Pathology, Pathological Anatomy Service of Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, 23033-900, Brazil.; Department of Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil.
Serra-Campos AO; Unidade Integrada de Patologia Especializada (UniPE), Postgraduate Program in Pathology, Pathological Anatomy Service of Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, 23033-900, Brazil.
da Silva AKF; Unidade Integrada de Patologia Especializada (UniPE), Postgraduate Program in Pathology, Pathological Anatomy Service of Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, 23033-900, Brazil.
da Silva LE; Unidade Integrada de Patologia Especializada (UniPE), Postgraduate Program in Pathology, Pathological Anatomy Service of Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, 23033-900, Brazil.
Cunha KS; Unidade Integrada de Patologia Especializada (UniPE), Postgraduate Program in Pathology, Pathological Anatomy Service of Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, 23033-900, Brazil.; Department of Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil.
Źródło:
Virchows Archiv : an international journal of pathology [Virchows Arch] 2021 Jul; Vol. 479 (1), pp. 121-131. Date of Electronic Publication: 2021 Jan 19.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin ; New York : Springer International, c1994-
MeSH Terms:
Cell Cycle*
Cell Proliferation*
Immunohistochemistry*
Paraffin Embedding*
Cell Nucleus/*chemistry
Ki-67 Antigen/*analysis
Neoplasms/*chemistry
Cell Nucleus/pathology ; Humans ; Neoplasms/pathology ; Observer Variation ; Predictive Value of Tests ; Reproducibility of Results
References:
Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31:13–20. https://doi.org/10.1002/ijc.2910310104. (PMID: 10.1002/ijc.29103101046339421)
Gerdes J, Li L, Schlueter C et al (1991) Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol 138:867–873. (PMID: 20121751886092)
Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J. Cell. Physiol. 182:311–322. (PMID: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9)
Sobecki M, Mrouj K, Colinge J et al (2017) Cell-cycle regulation accounts for variability in Ki-67 expression levels. Cancer Res 77:2722–2734. https://doi.org/10.1158/0008-5472.CAN-16-0707. (PMID: 10.1158/0008-5472.CAN-16-070728283655)
Sun X, Kaufman PD (2018) Ki-67: more than a proliferation marker. Chromosoma 127:175–186. (PMID: 10.1007/s00412-018-0659-8)
Chen G (2015) The prognostic role of Ki-67/MIB-1 in cervical cancer: a systematic review with meta-analysis. Med Sci Monit 21:882–889. https://doi.org/10.12659/msm.892807. (PMID: 10.12659/msm.892807258073054386420)
Røge R, Nielsen S, Riber-Hansen R, Vyberg M (2020) Ki-67 proliferation index in breast cancer as a function of assessment method. Appl Immunohistochem Mol Morphol Publish Ah. https://doi.org/10.1097/PAI.0000000000000846.
Williams GH, Stoeber K (2012) The cell cycle and cancer. J Pathol 226:352–364. https://doi.org/10.1002/path.3022. (PMID: 10.1002/path.302221990031)
Buckley AM, Lynam-Lennon N, O’Neill H, O’Sullivan J (2020) Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol 17:298–313. https://doi.org/10.1038/s41575-019-0247-2. (PMID: 10.1038/s41575-019-0247-232005946)
Seiwert TY, Salama JK, Vokes EE (2007) The concurrent chemoradiation paradigm—general principles. Nat Clin Pract Oncol 4:86–100. https://doi.org/10.1038/ncponc0714. (PMID: 10.1038/ncponc071417259930)
Mills CC, Kolb E, Sampson VB (2018) Development of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy. Cancer Res 78:320–325. https://doi.org/10.1158/0008-5472.CAN-17-2782. (PMID: 10.1158/0008-5472.CAN-17-2782293111605771851)
Jain RK, Hong DS, Naing A et al (2015) Novel phase I study combining G1 phase, S phase, and G2/M phase cell cycle inhibitors in patients with advanced malignancies. Cell Cycle 14:3434–3440. https://doi.org/10.1080/15384101.2015.1090065. (PMID: 10.1080/15384101.2015.1090065264674274825574)
Thu K, Soria-Bretones I, Mak T, Cescon D (2018) Targeting the cell cycle in breast cancer: towards the next phase. Cell Cycle 17:1871–1885. https://doi.org/10.1080/15384101.2018.1502567. (PMID: 10.1080/15384101.2018.1502567300783546152498)
Yano S, Tazawa H, Kagawa S et al (2020) FUCCI real-time cell-cycle imaging as a guide for designing improved cancer therapy: a review of innovative strategies to target quiescent chemo-resistant cancer cells. Cancers (Basel) 12:2655. https://doi.org/10.3390/cancers12092655. (PMID: 10.3390/cancers12092655)
Chattopadhyay PK, Roederer M (2015) A mine is a terrible thing to waste: high content, single cell technologies for comprehensive immune analysis. Am. J. Transplant. 15:1155–1161. (PMID: 10.1111/ajt.13193)
Ferro A, Mestre T, Carneiro P et al (2017) Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images. Lab Investig 97:615–625. https://doi.org/10.1038/labinvest.2017.13. (PMID: 10.1038/labinvest.2017.1328263290)
Ramón y Cajal S, Sesé M, Capdevila C et al (2020) Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol Med 98:161–177. https://doi.org/10.1007/s00109-020-01874-2. (PMID: 10.1007/s00109-020-01874-231970428)
Sasaki K, Murakami T, Kawasaki M, Takahashi M (1987) The cell cycle associated change of the Ki-67 reactive nuclear antigen expression. J Cell Physiol 133:579–584. https://doi.org/10.1002/jcp.1041330321. (PMID: 10.1002/jcp.10413303213121642)
Sasaki K, Matsumura K, Murakami T et al (1990) Intranuclear localization of the Ki-67 reactive antigen in HeLa cells. Flow cytometric analysis. Biol Cell 68:129–132. https://doi.org/10.1016/0248-4900(90)90297-G. (PMID: 10.1016/0248-4900(90)90297-G2192767)
Kill IR (1996) Localisation of the Ki-67 antigen within the nucleolus. Evidence for a fibrillarin-deficient region of the dense fibrillar component. J Cell Sci 109:1253–1263. (PMID: 10.1242/jcs.109.6.1253)
Matheson TD, Kaufman PD (2017) The p150N domain of chromatin assembly factor-1 regulates Ki-67 accumulation on the mitotic perichromosomal layer. Mol Biol Cell 28:21–29. https://doi.org/10.1091/mbc.e16-09-0659. (PMID: 10.1091/mbc.e16-09-0659278070465221625)
Verheijen R, Kuijpers HJ, Schlingemann RO et al (1989) Ki-67 detects a nuclear matrix-associated proliferation-related antigen. I. Intracellular localization during interphase. J Cell Sci 92(Pt 1):123–130. (PMID: 10.1242/jcs.92.1.123)
van Dierendonck JH, Keijzer R, van de Velde CJ, Cornelisse CJ (1989) Nuclear distribution of the Ki-67 antigen during the cell cycle: comparison with growth fraction in human breast cancer cells. Cancer Res 49:2999–3006. (PMID: 2720660)
Endl E, Gerdes J (2000) The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res 257:231–237. https://doi.org/10.1006/excr.2000.4888. (PMID: 10.1006/excr.2000.488810837136)
Saiwaki T, Kotera I, Sasaki M et al (2005) In vivo dynamics and kinetics of pKi-67: transition from a mobile to an immobile form at the onset of anaphase. Exp Cell Res 308:123–134. https://doi.org/10.1016/j.yexcr.2005.04.010. (PMID: 10.1016/j.yexcr.2005.04.01015896774)
Starborg M, Gell K, Brundell E, Höög C (1996) The murine Ki-67 cell proliferation antigen accumulates in the nucleolar and heterochromatic regions of interphase cells and at the periphery of the mitotic chromosomes in a process essential for cell cycle progression. J Cell Sci 109:143–153. (PMID: 10.1242/jcs.109.1.143)
Norton JT, Wang C, Gjidoda A et al (2009) The perinucleolar compartment is directly associated with DNA. J Biol Chem 284:4090–4101. https://doi.org/10.1074/jbc.M807255200. (PMID: 10.1074/jbc.M807255200190152602640956)
Bridger JM, Kill IR, Lichter P (1998) Association of pKi-67 with satellite DNA of the human genome in early G1 cells. Chromosome Res 6:13–24. (PMID: 10.1023/A:1009210206855)
Cuylen S, Blaukopf C, Politi AZ et al (2016) Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535:308–312. https://doi.org/10.1038/nature18610. (PMID: 10.1038/nature18610273622264947524)
Ács B, Kulka J, Kovács KA et al (2017) Comparison of 5 Ki-67 antibodies regarding reproducibility and capacity to predict prognosis in breast cancer: does the antibody matter? Hum Pathol 65:31–40. https://doi.org/10.1016/j.humpath.2017.01.011. (PMID: 10.1016/j.humpath.2017.01.01128188752)
Mukaka MM (2012) Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24:69–71. (PMID: 236382783576830)
Braun N, Papadopoulos T, Müller-Hermelink HK (1988) Cell cycle dependent distribution of the proliferation-associated Ki-67 antigen in human embryonic lung cells. Virchows Arch B Cell Pathol Incl Mol Pathol 56:25–33. https://doi.org/10.1007/BF02889998. (PMID: 10.1007/BF028899982907198)
Caragine CM, Haley SC, Zidovska A (2019) Nucleolar dynamics and interactions with nucleoplasm in living cells. Elife 8:. https://doi.org/10.7554/eLife.47533.
Du Manoir S, Guillaud P, Camus E et al (1991) Ki-67 labeling in postmitotic cells defines different Ki-67 pathways within the 2c compartment. Cytometry 12:455–463. https://doi.org/10.1002/cyto.990120511. (PMID: 10.1002/cyto.9901205111935459)
van Koningsbruggen S, Gierliński M, Schofield P et al (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748. https://doi.org/10.1091/mbc.e10-06-0508. (PMID: 10.1091/mbc.e10-06-0508208266082965689)
Miller I, Min M, Yang C et al (2018) Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep 24:1105–1112.e5. https://doi.org/10.1016/j.celrep.2018.06.110. (PMID: 10.1016/j.celrep.2018.06.110300679686108547)
Puripat N, Loharamtaweethong K (2019) Phosphohistone H3 (PHH3) as a surrogate of mitotic figure count for grading in meningiomas: a comparison of PHH3 (S10) versus PHH3 (S28) antibodies. Virchows Arch 474:87–96. https://doi.org/10.1007/s00428-018-2458-2. (PMID: 10.1007/s00428-018-2458-230267302)
Tomić S, Mrklić I, Razumović JJ et al (2019) Inter-laboratory comparison of Ki-67 proliferating index detected by visual assessment and automated digital image analysis. Breast Dis 38:73–79. https://doi.org/10.3233/BD-180341. (PMID: 10.3233/BD-18034130958325)
Clyde RG, Bown JL, Hupp TR et al (2006) The role of modelling in identifying drug targets for diseases of the cell cycle. J R Soc Interface 3:617–627. https://doi.org/10.1098/rsif.2006.0146. (PMID: 10.1098/rsif.2006.0146169713301664649)
Gurkan-Cavusoglu E, Schupp JE, Kinsella TJ, Loparo KA (2011) Analysis of cell cycle dynamics using probabilistic cell cycle models. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 141–144.
Danielsen HE, Pradhan M, Novelli M (2016) Revisiting tumour aneuploidy — the place of ploidy assessment in the molecular era. Nat Rev Clin Oncol 13:291–304. https://doi.org/10.1038/nrclinonc.2015.208. (PMID: 10.1038/nrclinonc.2015.20826598944)
Dökümcü K, Farahani RM (2019) Evolution of resistance in cancer: a cell cycle perspective. Front Oncol 9:376. https://doi.org/10.3389/fonc.2019.00376. (PMID: 10.3389/fonc.2019.00376311437066520611)
Booth DG, Takagi M, Sanchez-Pulido L et al (2014) Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. Elife 3:e01641. https://doi.org/10.7554/elife.01641. (PMID: 10.7554/elife.01641248676364032110)
Ji X, Yang C, Xie J, et al (2020) Effect of Saponin from Tupistra chinensis Baker on proliferation and apoptosis of ovarian cancer cells by Wnt/β Catenin pathway. IUBMB Life iub.2308. https://doi.org/10.1002/iub.2308.
Yokoyama R, Hirakawa T, Hayashi S et al (2016) Dynamics of plant DNA replication based on PCNA visualization. Sci Rep 6:29657. https://doi.org/10.1038/srep29657. (PMID: 10.1038/srep29657274174984945867)
Sun X, Bizhanova A, Matheson TD et al (2017) Ki-67 contributes to normal cell cycle progression and inactive X heterochromatin in p21 checkpoint-proficient human cells. Mol Cell Biol 37. https://doi.org/10.1128/MCB.00569-16.
Loddo M, Kingsbury SR, Rashid M et al (2009) Cell-cycle-phase progression analysis identifies unique phenotypes of major prognostic and predictive significance in breast cancer. Br J Cancer 100:959–970. https://doi.org/10.1038/sj.bjc.6604924. (PMID: 10.1038/sj.bjc.6604924192407142661794)
Rodriguez-Acebes S, Proctor I, Loddo M et al (2010) Targeting DNA replication before it starts: Cdc7 as a therapeutic target in p53-mutant breast cancers. Am J Pathol 177:2034–2045. https://doi.org/10.2353/ajpath.2010.100421. (PMID: 10.2353/ajpath.2010.100421207245972947297)
Arnst KE, Banerjee S, Chen H et al (2019) Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med Res Rev 39:1398–1426. https://doi.org/10.1002/med.21568. (PMID: 10.1002/med.21568307467346857175)
Nam S, Chong Y, Jung CK et al (2020) Introduction to digital pathology and computer-aided pathology. J Pathol Transl Med 54:125–134. https://doi.org/10.4132/jptm.2019.12.31. (PMID: 10.4132/jptm.2019.12.31320459657093286)
Contributed Indexing:
Keywords: Biomarker; Cell cycle; Immunohistochemistry; Ki-67
Substance Nomenclature:
0 (Ki-67 Antigen)
0 (MKI67 protein, human)
Entry Date(s):
Date Created: 20210119 Date Completed: 20210802 Latest Revision: 20210802
Update Code:
20240105
DOI:
10.1007/s00428-020-03010-4
PMID:
33464376
Czasopismo naukowe
The Ki-67 labeling index is traditionally used to investigate tumor aggressiveness. However, no diagnostic or prognostic value has been associated to the heterogeneous pattern of nuclear positivity. The aims of this study were to develop a classification for the patterns of Ki-67-positive nuclei; to search scientific evidence for the Ki-67 expression and location throughout the cell cycle; and to develop a protocol to apply the classification of patterns of Ki-67-positive nuclei in squamous epithelium with different proliferative activities. Based on empirical observation of paraffin sections submitted to immunohistochemistry for the determination of Ki-67 labeling index and literature review about Ki-67 expression, we created a classification of the patterns of nuclear positivity (NP1, NP2, NP3, NP4, and mitosis). A semi-automatic protocol was developed to identify and quantify the Ki-67 immunostaining patterns in target tissues. Two observers evaluated 7000 nuclei twice to test the intraobserver reliability, and six evaluated 1000 nuclei to the interobserver evaluation. The results showed that the immunohistochemical patterns of Ki-67 are similar in the tumoral and non-tumoral epithelium and were classified without difficulty. There was a high intraobserver reliability (Spearman correlation coefficient > 0.9) and moderate interobserver agreement (k = 0.523). Statistical analysis showed that non-malignant epithelial specimens presented a higher number of NP1 (geographic tongue = 83.8 ± 21.8; no lesion = 107.6 ± 52.7; and mild dysplasia = 86.6 ± 25.8) when compared to carcinoma in Situ (46.8 ± 34.8) and invasive carcinoma (72.6 ± 37.9). The statistical evaluation showed significant difference (p < 0.05). Thus, we propose a new way to evaluate Ki-67, where the pattern of its expression may be associated with the dynamics of the cell cycle. Future proof of this association will validate the use of the classification for its possible impact on cancer prognosis and guidance on personalized therapy.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies