Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Intermittent Hypoxic Conditioning Rescues Cognition and Mitochondrial Bioenergetic Profile in the Triple Transgenic Mouse Model of Alzheimer's Disease.

Tytuł:
Intermittent Hypoxic Conditioning Rescues Cognition and Mitochondrial Bioenergetic Profile in the Triple Transgenic Mouse Model of Alzheimer's Disease.
Autorzy:
Correia SC; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal.; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
Machado NJ; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
Alves MG; Unit for Multidisciplinary Research in Biomedicine (UMIB), Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.
Oliveira PF; QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Moreira PI; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal.; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
Źródło:
International journal of molecular sciences [Int J Mol Sci] 2021 Jan 05; Vol. 22 (1). Date of Electronic Publication: 2021 Jan 05.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, [2000-
MeSH Terms:
Alzheimer Disease/*physiopathology
Cognition/*physiology
Cognition Disorders/*physiopathology
Energy Metabolism/*physiology
Hypoxia/*physiopathology
Mice, Transgenic/*physiology
Mitochondria/*physiology
Alzheimer Disease/metabolism ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/metabolism ; Animals ; Anxiety/metabolism ; Anxiety/physiopathology ; Brain/metabolism ; Brain/physiopathology ; Cognition Disorders/metabolism ; Disease Models, Animal ; Hypoxia/metabolism ; Male ; Mice ; Mice, Transgenic/metabolism ; Mitochondria/metabolism
References:
Andrology. 2013 May;1(3):495-504. (PMID: 23495257)
Neurobiol Learn Mem. 2015 Nov;125:152-162. (PMID: 26385257)
Brain Res. 2012 Mar 2;1441:64-78. (PMID: 22290178)
J Neurosci. 2008 Feb 27;28(9):2015-24. (PMID: 18305236)
J Cereb Blood Flow Metab. 1993 May;13(3):438-47. (PMID: 8478402)
Neurol Clin. 2016 Nov;34(4):941-953. (PMID: 27720002)
Mitochondrion. 2006 Dec;6(6):323-30. (PMID: 17123871)
Aging Cell. 2019 Feb;18(1):e12873. (PMID: 30488653)
Alzheimers Dement. 2018 Apr;14(4):535-562. (PMID: 29653606)
Alzheimers Res Ther. 2011 May 05;3(2):15. (PMID: 21545753)
Methods Mol Biol. 2019;1916:99-103. (PMID: 30535687)
Int J Mol Sci. 2020 Nov 19;21(22):. (PMID: 33227902)
Antioxid Redox Signal. 2005 Sep-Oct;7(9-10):1101-9. (PMID: 16115014)
Annu Rev Cell Dev Biol. 2019 Oct 6;35:477-500. (PMID: 31340124)
J Alzheimers Dis. 2012;28(4):765-9. (PMID: 22112551)
Lancet Neurol. 2019 Jan;18(1):88-106. (PMID: 30497964)
Eur Rev Med Pharmacol Sci. 2015 Dec;19(24):4866-71. (PMID: 26744879)
Curr Pharm Des. 2011;17(31):3381-9. (PMID: 21902670)
J Cell Biol. 2014 Mar 31;204(7):1087-98. (PMID: 24687278)
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20057-62. (PMID: 19897719)
Am J Alzheimers Dis Other Demen. 2020 Jan-Dec;35:1533317519896725. (PMID: 31902230)
Ann Neurol. 2011 Jun;69(6):975-85. (PMID: 21437933)
J Neurosci Res. 2017 Apr;95(4):943-972. (PMID: 27350397)
Exp Neurol. 2015 Oct;272:26-40. (PMID: 25900056)
ACS Chem Neurosci. 2019 Feb 20;10(2):902-909. (PMID: 30412668)
J Neurochem. 2012 Feb;120(3):419-29. (PMID: 22077634)
Antioxidants (Basel). 2017 Apr 05;6(2):. (PMID: 28379197)
J Neurosci Methods. 1984 May;11(1):47-60. (PMID: 6471907)
Front Mol Neurosci. 2017 Sep 14;10:291. (PMID: 28959184)
Biochim Biophys Acta. 2016 Oct;1862(10):1909-17. (PMID: 27460705)
Clin Exp Pharmacol Physiol. 2017 Mar;44(3):327-334. (PMID: 28004401)
Pharmacol Ther. 2019 Mar;195:186-198. (PMID: 30439458)
J Neurochem. 2018 Sep;146(6):649-669. (PMID: 29645219)
Neurobiol Aging. 1995 May-Jun;16(3):271-8; discussion 278-84. (PMID: 7566337)
J Neurosci. 2001 May 1;21(9):3017-23. (PMID: 11312286)
Cell. 2007 Aug 10;130(3):548-62. (PMID: 17693261)
Neurosci Behav Physiol. 2010 Sep;40(7):737-43. (PMID: 20635216)
J Cereb Blood Flow Metab. 2013 May;33(5):764-73. (PMID: 23443175)
Hum Mol Genet. 2009 Oct 15;18(R2):R169-76. (PMID: 19808793)
Cell Death Differ. 2008 Jul;15(7):1147-52. (PMID: 18437161)
Nat Rev Drug Discov. 2020 Sep;19(9):609-633. (PMID: 32709961)
Biochem Soc Trans. 2020 Apr 29;48(2):631-644. (PMID: 32219382)
Biochim Biophys Acta. 2015 Aug;1852(8):1665-75. (PMID: 25960150)
Curr Alzheimer Res. 2013 May 1;10(4):406-19. (PMID: 23061885)
N Engl J Med. 2010 Jan 28;362(4):329-44. (PMID: 20107219)
Diabetes. 2012 May;61(5):1234-42. (PMID: 22427376)
Acta Neurol Belg. 2013 Dec;113(4):507-13. (PMID: 24122478)
Clin Epidemiol. 2014 Jan 08;6:37-48. (PMID: 24470773)
NMR Biomed. 2011 Nov;24(9):1029-37. (PMID: 21274961)
Exp Gerontol. 2012 Nov;47(11):878-86. (PMID: 22824543)
Antioxid Redox Signal. 2011 Mar 1;14(5):863-80. (PMID: 20578961)
Synapse. 2015 Jan;69(1):7-14. (PMID: 25155519)
J Neurosci. 2009 Jul 15;29(28):9090-103. (PMID: 19605646)
Alzheimers Dement. 2017 Jun;13(6):644-653. (PMID: 28024995)
Arch Neurol. 2009 Mar;66(3):352-61. (PMID: 19273754)
J Neurosci Methods. 2018 Dec 1;310:63-74. (PMID: 30287283)
Biochem J. 1971 Nov;125(1):115-27. (PMID: 5158898)
J Neurochem. 1993 Dec;61(6):2007-14. (PMID: 8245957)
Biochim Biophys Acta. 2011 Mar;1807(3):270-4. (PMID: 21145305)
Neurobiol Aging. 2002 May-Jun;23(3):371-6. (PMID: 11959398)
Biosci Rep. 2001 Dec;21(6):789-800. (PMID: 12166828)
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1215-H1231. (PMID: 30004243)
Neuron. 2017 May 3;94(3):595-610.e6. (PMID: 28472658)
Cell Mol Life Sci. 2019 May;76(9):1759-1777. (PMID: 30767037)
J Alzheimers Dis. 2013;37(2):325-33. (PMID: 23948880)
Nat Rev Dis Primers. 2015 Oct 15;1:15056. (PMID: 27188934)
Trends Endocrinol Metab. 2016 Feb;27(2):105-117. (PMID: 26754340)
Ann Neurol. 2005 May;57(5):695-703. (PMID: 15852400)
J Neurochem. 1992 Aug;59(2):776-9. (PMID: 1321237)
Biogerontology. 2020 Jun;21(3):257-274. (PMID: 32048098)
Transl Stroke Res. 2013 Feb;4(1):19-24. (PMID: 24323188)
Hum Mol Genet. 2016 Feb 15;25(4):792-806. (PMID: 26721933)
Curr Biol. 2018 Feb 19;28(4):R170-R185. (PMID: 29462587)
Neurobiol Aging. 2004 Jan;25(1):105-10. (PMID: 14675736)
Nat Rev Neurosci. 2012 Jan 05;13(2):77-93. (PMID: 22218207)
Cond Med. 2018 Apr;1(3):143-162. (PMID: 30370426)
Methods Mol Biol. 2018;1782:7-29. (PMID: 29850992)
J Alzheimers Dis. 2006 Jul;9(2):119-26. (PMID: 16873959)
CNS Neurosci Ther. 2019 Jul;25(7):876-886. (PMID: 30900394)
Biochim Biophys Acta. 2014 Feb;1842(2):220-31. (PMID: 24252614)
Mol Psychiatry. 2017 Feb;22(2):306-311. (PMID: 27021814)
Brain Behav. 2020 Feb;10(2):e01513. (PMID: 31877583)
Exp Cell Res. 2015 May 15;334(1):35-44. (PMID: 25612908)
Trends Pharmacol Sci. 2019 Jan;40(1):8-10. (PMID: 30455065)
J Biol Chem. 1949 Feb;177(2):751-66. (PMID: 18110453)
Brain Pathol. 2016 Sep;26(5):632-47. (PMID: 27327899)
Cells. 2019 Jan 09;8(1):. (PMID: 30634508)
Mol Neurodegener. 2019 Aug 2;14(1):32. (PMID: 31375134)
Alzheimers Res Ther. 2017 Aug 9;9(1):60. (PMID: 28793924)
Hum Mol Genet. 2015 May 15;24(10):2938-51. (PMID: 25678552)
Mol Neurobiol. 2017 Oct;54(8):6133-6147. (PMID: 27699604)
Neuron. 2003 Jul 31;39(3):409-21. (PMID: 12895417)
Int Neurourol J. 2019 Feb;23(Suppl 1):S5-10. (PMID: 30832462)
Neuronal Signal. 2020 Jun 01;4(2):NS20200008. (PMID: 32714603)
J Appl Physiol (1985). 2012 May;112(10):1706-14. (PMID: 22403345)
Contributed Indexing:
Keywords: 3×Tg-AD mouse model; Alzheimer’s disease; brain cortex; cognition; intermittent hypoxic conditioning; mitochondrial bioenergetics and dynamics; synaptic integrity
Substance Nomenclature:
0 (Amyloid beta-Peptides)
0 (Amyloid beta-Protein Precursor)
Entry Date(s):
Date Created: 20210120 Date Completed: 20210405 Latest Revision: 20210405
Update Code:
20240105
PubMed Central ID:
PMC7796478
DOI:
10.3390/ijms22010461
PMID:
33466445
Czasopismo naukowe
The lack of effective disease-modifying therapeutics to tackle Alzheimer's disease (AD) is unsettling considering the actual prevalence of this devastating neurodegenerative disorder worldwide. Intermittent hypoxic conditioning (IHC) is a powerful non-pharmacological procedure known to enhance brain resilience. In this context, the aim of the present study was to investigate the potential long-term protective impact of IHC against AD-related phenotype, putting a special focus on cognition and mitochondrial bioenergetics and dynamics. For this purpose, six-month-old male triple transgenic AD mice (3×Tg-AD) were submitted to an IHC protocol for two weeks and the behavioral assessment was performed at 8.5 months of age, while the sacrifice of mice occurred at nine months of age and their brains were removed for the remaining analyses. Interestingly, IHC was able to prevent anxiety-like behavior and memory and learning deficits and significantly reduced brain cortical levels of amyloid-β (Aβ) in 3×Tg-AD mice. Concerning brain energy metabolism, IHC caused a significant increase in brain cortical levels of glucose and a robust improvement of the mitochondrial bioenergetic profile in 3×Tg-AD mice, as mirrored by the significant increase in mitochondrial membrane potential (ΔΨm) and respiratory control ratio (RCR). Notably, the improvement of mitochondrial bioenergetics seems to result from an adaptative coordination of the distinct but intertwined aspects of the mitochondrial quality control axis. Particularly, our results indicate that IHC favors mitochondrial fusion and promotes mitochondrial biogenesis and transport and mitophagy in the brain cortex of 3×Tg-AD mice. Lastly, IHC also induced a marked reduction in synaptosomal-associated protein 25 kDa (SNAP-25) levels and a significant increase in both glutamate and GABA levels in the brain cortex of 3×Tg-AD mice, suggesting a remodeling of the synaptic microenvironment. Overall, these results demonstrate the effectiveness of the IHC paradigm in forestalling the AD-related phenotype in the 3×Tg-AD mouse model, offering new insights to AD therapy and forcing a rethink concerning the potential value of non-pharmacological interventions in clinical practice.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies