Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Associations between diet, the gut microbiome and short chain fatty acids in youth with islet autoimmunity and type 1 diabetes.

Tytuł:
Associations between diet, the gut microbiome and short chain fatty acids in youth with islet autoimmunity and type 1 diabetes.
Autorzy:
Harbison JE; Women's and Children's Hospital, Adelaide, South Australia, Australia.; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
Thomson RL; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
Wentworth JM; Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.
Louise J; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
Roth-Schulze A; Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
Battersby RJ; Women's and Children's Hospital, Adelaide, South Australia, Australia.
Ngui KM; Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
Penno MAS; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
Colman PG; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.
Craig ME; Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.; School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
Barry SC; Women's and Children's Hospital, Adelaide, South Australia, Australia.; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
Tran CD; CSIRO, Health and Biosecurity, Adelaide, South Australia, Australia.
Makrides M; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.; SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
Harrison LC; Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.
Couper JJ; Women's and Children's Hospital, Adelaide, South Australia, Australia.; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
Źródło:
Pediatric diabetes [Pediatr Diabetes] 2021 May; Vol. 22 (3), pp. 425-433. Date of Electronic Publication: 2021 Feb 01.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Copenhagen : Munksgaard, c2000-
MeSH Terms:
Diet*
Gastrointestinal Microbiome*
Autoimmunity/*physiology
Diabetes Mellitus, Type 1/*metabolism
Fatty Acids, Volatile/*metabolism
Islets of Langerhans/*immunology
Adolescent ; Case-Control Studies ; Child ; Cross-Sectional Studies ; Diabetes Mellitus, Type 1/complications ; Female ; Humans ; Male ; Surveys and Questionnaires
References:
Duncan SH, Belenguer A, Holtrop G, et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73(4):1073-1078.
Gutiérrez-Díaz I, Fernández-Navarro T, Sánchez B, Margolles A, González S. Mediterranean diet and faecal microbiota: a transversal study. Food Funct. 2016;7(5):2347-2356.
Foerster J, Maskarinec G, Reichardt N, et al. The influence of whole grain products and red meat on intestinal microbiota composition in normal weight adults: a randomized crossover intervention trial. PLoS One. 2014;9(10):1-9.
De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812-1821.
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-563.
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(October):105-108.
Stewart CJ, Ajami NJ, Brien JLO, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562:583-588.
Smith-Brown P, Morrison M, Krause L, Davies PSW. Dairy and plant based food intakes are associated with altered faecal microbiota in 2 to 3 year old Australian children. Sci Rep. 2016;6(1):32385.
Wu M, McNulty NP, Rodionov DA, et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut bacteroides. Science. 2015;350(6256):55-63.
Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol. 2018;9(May:1-11.
Mitsou EK, Kakali A, Antonopoulou S, et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr. 2017;117(12):1645-1655.
Pounis G, Bonaccio M, Tuohy KM, et al. Diet-Microbe Interactions in the Gut. Sydney: Elsevier; 2015:209-223.
Wu GD, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65(1):63-72.
Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52-60.
Endesfelder D, Castell WZ, Ardissone A, et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes. 2014;63(6):2006-2014.
Mariño E, Richards JL, McLeod KH, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18:552-562. https://doi.org/10.1038/ni.3713.
Guilloteau P, Martin L, Eeckhaut V, et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010;23(2):366-384.
Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous clostridium species. Science. 2011;331(January:337-342.
Zhang M, Zhou Q, Dorfman RG, et al. Butyrate inhibits interleukin-17 and generates tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol. 2016;16(1):84.
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446-450.
Needell JC, Ir D, Robertson CE, Kroehl ME, Frank DN, Zipris D. Maternal treatment with short-chain fatty acids modulates the intestinal microbiota and immunity and ameliorates type 1 diabetes in the offspring. PLoS One. 2017;12(9):1-18.
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577-591.
Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients. 2019;11(8):1943.
Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031-1064.
Vonk RJ, Reckman G. Progress in the biology and analysis of short chain fatty acids. J Physiol. 2017;595(2):419-420.
Kostic ADD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-273.
De Goffau MC, Luopajärvi K, Knip M, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013;62(4):1238-1244.
Cinek O, Kramna L, Lin J, et al. Imbalance of bacteriome profiles within the Finnish diabetes prediction and prevention study: parallel use of 16S profiling and virome sequencing in stool samples from children with islet autoimmunity and matched controls. Pediatr Diabetes. 2016;18(7):588-598.
Qi C-J, Zhang Q, Yu M, et al. Imbalance of fecal microbiota at newly diagnosed type 1 diabetes in Chinese children. Chin Med J (Engl). 2016;129(11):1298-1304.
Alkanani AK, Hara N, Gottlieb PA, et al. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes. 2015;64(10):3510-3520.
Murri M, Leiva I, Gomez-zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013;11:46.
Giongo A, K a G, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5:82-91.
Endesfelder D, Engel M, Davis-Richardson AG, et al. Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production. Microbiome. 2016;4(1):17.
Davis-Richardson AG, Ardissone AN, Dias R, et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol. 2014;5(Dec:678.
Mejıa-Leon E, Petrosino J, Ajami N, Dominguez-Bello M, de la Barca A. Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep. 2014;22(4):3814.
De Goffau MC, Fuentes S, Van Den Bogert B, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014;57(8):1569-1577.
Brown CT, Davis-Richardson AG, Giongo A, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6(10):e25792.
Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Publ gr. 2016;12(3):154-167.
Harbison JE, Roth-Schulze AJ, Giles LC, et al. Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: a prospective cohort study. Pediatr Diabetes. 2019;20(5):574-583.
Gavin PG, Mullaney JA, Loo D, et al. Intestinal metaproteomics reveals host-microbiota interactions in subjects at risk for type 1 diabetes. Diabetes Care. 2018;41(10):2178-2186.
Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589-594.
Gavin PG, Hamilton-Williams EE. The gut microbiota in type 1 diabetes: friend or foe? Curr Opin Endocrinol Diabetes Obes. 2019;26(4):207-212.
Watson JF, Collins CE, Sibbritt DW, Dibley MJ, Garg ML. Reproducibility and comparative validity of a food frequency questionnaire for Australian children and adolescents. Int J Behav Nutr Phys Act. 2009;33(5):906-914.
Marshall S, Watson J, Burrows T, Guest M, Collins CE. The development and evaluation of the Australian child and adolescent recommended food score: a cross-sectional study. Nutr J. 2012;11(1):15-18.
Burrows TL, Collins K, Watson J, et al. Validity of the Australian recommended food score as a diet quality index for pre-schoolers. Nutr J. 2014;13(1):1-10.
Collins CE, Burrows TL, Rollo ME, et al. The comparative validity and reproducibility of a diet quality index for adults: the Australian recommended food score. Nutrients. 2015;7(2):785-798.
Doukhanine E, Bouevitch A, Merino C, Pozza L. OMNIgene•GUT enables reliable collection of high quality fecal samples for GUT microbiome studies (product information). DNA Genotek. 2014;PD-PR-0043.
Penington JS, Penno MAS, Ngui KM, et al. Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis. Sci Rep. 2018;1(1):175877.
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e6127.
Oksanen AJ, Blanchet FG, Kindt R, et al. Community ecology package. Version 2.5-2. 2018.
Altschul S. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-410.
Kuczmarski R, Ogden C, Guo S, et al. 2000 CDC growth charts for the United States: methods and development. National Centre for health statistics. Vital Health Stat. 2002;246(11):1-190.
Gilbertson HR, Reed K, Clark S, Francis KL, Cameron FJ. An audit of the dietary intake of Australian children with type 1 diabetes. Nutr Diabetes. 2018;8(1):10.
Pham-Short A, Donaghue KC, Ambler G, Garnett S, Craig ME. Greater postprandial glucose excursions and inadequate nutrient intake in youth with type 1 diabetes and celiac disease. Sci Rep. 2017;7(March:1-7.
Thomson R, Adams L, Anderson J, et al. Australian children with type 1 diabetes consume high sodium and high saturated fat diets: comparison with national and international guidelines. J Paediatr Child Health. 2019;55(10):1188-1193.
Mejía-león ME, López-domínguez L, Aguayo-Patrón SV, et al. Dietary changes and gut dysbiosis in children with type 1 diabetes. J Am Coll Nutr. 2018;37:501-507.
Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210-215.
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(1):35-56.
Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473-2479.
Contributed Indexing:
Keywords: diet; gut microbiome; islet autoimmunity; short chain fatty acids; type 1 diabetes
Substance Nomenclature:
0 (Fatty Acids, Volatile)
Entry Date(s):
Date Created: 20210120 Date Completed: 20220117 Latest Revision: 20220117
Update Code:
20240105
DOI:
10.1111/pedi.13178
PMID:
33470492
Czasopismo naukowe
Aim: We aimed to characterize associations between diet and the gut microbiome and short chain fatty acid (SCFA) products in youth with islet autoimmunity or type 1 diabetes (IA/T1D) in comparison with controls.
Research Design and Methods: Eighty participants (25 diagnosed with T1D, 17 with confirmed IA, 38 sibling or unrelated controls) from the Australian T1D Gut Study cohort were studied (median [IQR] age 11.7 [8.9, 14.0] years, 43% female). A Food Frequency Questionnaire characterized daily macronutrient intake over the preceding 6 months. Plasma and fecal SCFA were measured by gas chromatography; gut microbiome composition and diversity by 16S rRNA gene sequencing.
Results: A 10 g increase in daily carbohydrate intake associated with higher plasma acetate in IA/T1D (adjusted estimate +5.2 (95% CI 1.1, 9.2) μmol/L p = 0.01) and controls (adjusted estimate +4.1 [95% CI 1.7, 8.5] μmol/L p = 0.04). A 5 g increase in total fat intake associated with lower plasma acetate in IA/T1D and controls. A 5% increase in noncore (junk) food intake associated with reduced richness (adjusted estimate -4.09 [95%CI -7.83, -0.35] p = .03) and evenness (-1.25 [95% CI -2.00, -0.49] p < 0.01) of the gut microbiome in IA/T1D. Fiber intake associated with community structure of the microbiome in IA/T1D.
Conclusions: Modest increments in carbohydrate and fat intake associated with plasma acetate in all youth. Increased junk food intake associated with reduced diversity of the gut microbiome in IA/T1D alone. These associations with the gut microbiome in IA/T1D support future efforts to promote SCFA by using dietary interventions.
(© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies