Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Defining the nocturnal period in 24-h ambulatory blood pressure monitoring: a comparison of three methods.

Tytuł:
Defining the nocturnal period in 24-h ambulatory blood pressure monitoring: a comparison of three methods.
Autorzy:
Slusniene A; State Research Institute Centre for Innovative Medicine.
Navickas P; State Research Institute Centre for Innovative Medicine.; Vilnius University, Faculty of Medicine, Vilnius, Lithuania.
Stankus A; State Research Institute Centre for Innovative Medicine.
Lauceviciene I; Vilnius University, Faculty of Medicine, Vilnius, Lithuania.
Ryliskyte L; Vilnius University, Faculty of Medicine, Vilnius, Lithuania.
Laucevicius A; State Research Institute Centre for Innovative Medicine.
Źródło:
Blood pressure monitoring [Blood Press Monit] 2021 Jun 01; Vol. 26 (3), pp. 207-214.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2000->: Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: London ; Philadelphia, PA : Rapid Science Publishers, c1996-
MeSH Terms:
Blood Pressure Monitoring, Ambulatory*
Hypertension*/diagnosis
Blood Pressure ; Circadian Rhythm ; Humans ; Middle Aged ; Time Factors
References:
Boggia J, Li Y, Thijs L, Hansen TW, Kikuya M, Björklund-Bodegård K, et al.; International Database on Ambulatory blood pressure monitoring in relation to Cardiovascular Outcomes (IDACO) investigators. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 2007; 370:1219–1229.
Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011; 57:3–10.
Staessen JA, Thijs L, Fagard R, O’Brien ET, Clement D, de Leeuw PW, et al. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic Hypertension in Europe Trial Investigators. JAMA. 1999; 282:539–546.
Kikuya M, Ohkubo T, Asayama K, Metoki H, Obara T, Saito S, et al. Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality: the Ohasama study. Hypertension. 2005; 45:240–245.
Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008; 51:55–61.
Parati G, Stergiou G, O’Brien E, Asmar R, Beilin L, Bilo G, et al.; European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014; 32:1359–1366.
Giles TD, Oparil S, Ofili EO, Pitt B, Purkayastha D, Hilkert R, et al. The role of ambulatory blood pressure monitoring compared with clinic and home blood pressure measures in evaluating moderate versus intensive treatment of hypertension with amlodipine/valsartan for patients uncontrolled on angiotensin receptor blocker monotherapy. Blood Press Monit. 2011; 16:87–95.
Hayano J, Yuda E, Furukawa Y, Yoshida Y. Association of 24-hour heart rate variability and daytime physical activity: ALLSTAR big data analysis. Int J Biosci Biochem Bioinform. 2018; 8:61–67.
Gosse P, Ansoborlo P, Lemetayer P, Clementy J. Daytime and nighttime ambulatory blood pressures should be calculated over the true sleep/waking cycle and not over arbitrary periods. Am J Hypertens. 1996; 9:269–272.
O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al.; European Society of Hypertension Working Group on Blood Pressure Monitoring. European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013; 31:1731–1768.
Peixoto Filho AJ, Mansoor GA, White WB. Effects of actual versus arbitrary awake and sleep times on analyses of 24-h blood pressure. Am J Hypertens. 1995; 8:676–680.
Laucevičius A, Kasiulevičius V, Jatužis D, Petrulionienė Ž, Ryliškytė L, Rinkūnienė E, et al. Lithuanian high cardiovascular risk (LitHiR) primary prevention programme-rationale and design. Semin Cardiovasc Med. 2012; 18:1–6.
Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al.; American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005; 112:2735–2752.
Barna I, Keszei A, Dunai A. Evaluation of meditech ABPM-04 ambulatory blood pressure measuring device, according to the British Hypertension Society (BHS) protocol. Blood Press Monit. 1998; 3:363–368.
Burden R, Faires J, Burden A. Numerical analysis: Cengage Learning. Boston, MA: Brooks/Cole; 2010. p. 135.
Slušnienė A, Laucevičius A, Navickas P, Ryliškytė L, Stankus V, Stankus A, et al. Daily heart rate variability indices in subjects with and without metabolic syndrome before and after the elimination of the influence of day-time physical activity. Medicina. 2019; 55:700.
Mena L, Pintos S, Queipo NV, Aizpúrua JA, Maestre G, Sulbarán T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005; 23:505–511.
Fleiss JL, Cohen J, Everitt BS. Large sample standard errors of kappa and weighted kappa. Psychol Bull. 1969; 72:323.
Graesser AC, McNamara DS, Kulikowich JM. Coh-Metrix: providing multilevel analyses of text characteristics. Educ Res. 2011; 40:223–234.
Lawrence I, Lin K. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989:255–268.
Yang WY, Melgarejo JD, Thijs L, Zhang ZY, Boggia J, Wei FF, et al.; International Database on Ambulatory Blood Pressure in Relation to Cardiovascular Outcomes (IDACO) Investigators. Association of Office and ambulatory blood pressure with mortality and cardiovascular outcomes. JAMA. 2019; 322:409–420.
Salles GF, Reboldi G, Fagard RH, Cardoso CR, Pierdomenico SD, Verdecchia P, et al.; ABC-H Investigators. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients: the ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension. 2016; 67:693–700.
Myredal A, Friberg P, Johansson M. Elevated myocardial repolarization lability and arterial baroreflex dysfunction in healthy individuals with nondipping blood pressure pattern. Am J Hypertens. 2010; 23:255–259.
Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Bombelli M, Cuspidi C, et al. Adrenergic, metabolic, and reflex abnormalities in reverse and extreme dipper hypertensives. Hypertension. 2008; 52:925–931.
Sachdeva A, Weder AB. Nocturnal sodium excretion, blood pressure dipping, and sodium sensitivity. Hypertension. 2006; 48:527–533.
Castelpoggi CH, Pereira VS, Fiszman R, Cardoso CR, Muxfeldt ES, Salles GF. A blunted decrease in nocturnal blood pressure is independently associated with increased aortic stiffness in patients with resistant hypertension. Hypertens Res. 2009; 32:591–596.
Matthews KA, Kamarck TW, H Hall M, Strollo PJ, Owens JF, Buysse DJ, et al. Blood pressure dipping and sleep disturbance in African-American and Caucasian men and women. Am J Hypertens. 2008; 21:826–831.
Satoh M, Kikuya M, Ohkubo T, Mori T, Metoki H, Hashimoto T, et al. Aldosterone-to-renin ratio and nocturnal blood pressure decline in a general population: the Ohasama study. J Hypertens. 2011; 29:1940–1947.
Fontes-Guerra PC, Cardoso CR, Muxfeldt ES, Salles GF. Nitroglycerin-mediated, but not flow-mediated vasodilation, is associated with blunted nocturnal blood pressure fall in patients with resistant hypertension. J Hypertens. 2015; 33:1666–1675.
Fagard RH, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Night-day blood pressure ratio and dipping pattern as predictors of death and cardiovascular events in hypertension. J Hum Hypertens. 2009; 23:645–653.
Eissa MA, Poffenbarger T, Portman RJ. Comparison of the actigraph versus patients’ diary information in defining circadian time periods for analyzing ambulatory blood pressure monitoring data. Blood Press Monit. 2001; 6:21–25.
Booth JN III, Muntner P, Abdalla M, Diaz KM, Viera AJ, Reynolds K, et al. Differences in nighttime and daytime ambulatory blood pressure when diurnal periods are defined by self-report, fixed-times and actigraphy: improving the detection of hypertension study. J Hypertens. 2016; 34:235.
Hermida RC, Ayala DE, Mojón A, Fernández JR. Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J Am Coll Cardiol. 2011; 58:1165–1173.
Cheng HM, Wu CL, Sung SH, Lee JC, Kario K, Chiang CE, et al. Prognostic utility of morning blood pressure surge for 20-year all-cause and cardiovascular mortalities: results of a community-based study. J Am Heart Assoc. 2017; 6:e007667.
Mansoor G, Peixoto A, White W. Effects of three methods of analysis on ambulatory blood pressure indices and the early morning rise in blood pressure. Blood Press Monit. 1996; 1:355–360.
Entry Date(s):
Date Created: 20210120 Date Completed: 20210428 Latest Revision: 20210508
Update Code:
20240105
DOI:
10.1097/MBP.0000000000000509
PMID:
33470645
Czasopismo naukowe
Objectives: The purpose of our study was to compare three definitions of ambulatory blood pressure (BP) nocturnal period and to assess their agreement in determining nocturnal BP dipping patterns.
Methods: We investigated 69 subjects with metabolic syndrome, aged 50-55 years. In all subjects, we assessed 24-h BP monitoring, electrocardiogram and actigraphy profiles. The nocturnal period was defined in three ways: as a fixed narrow nighttime period from 01:00 to 06:00, as a self-reported sleeping period and as a disappearance and onset of physical activity recorded by the actigraph.
Results: Our study revealed a significant discrepancy between the self-reported and actigraphy-based nocturnal periods (P < 0.001). In addition, different definitions of the nighttime yielded significant differences in determining nondipping, extreme dipping and dipping BP patterns, the identification of the latter being affected the most. The actigraphy-based approach best aligned with the fixed-time determination of the nocturnal period: Cohen's kappa coefficient for the nondipping pattern was 0.78 (0.58-1), for the dipping pattern 0.75 (0.59-0.91) and for the extreme dipping pattern 0.81 (0.65-0.97). In comparison to the self-reported determination of the nocturnal period, using the actigraphy-based approach resulted in reclassifying the nocturnal BP pattern in 20.3% of subjects.
Conclusions: The lack of agreement between fixed-time, self-reported and actigraphy-based determinations of the nighttime period affects the identification of the nocturnal BP patterns. In comparison to the self-reported nocturnal period estimation, the actigraphy-based approach results in the reclassification of BP dipping status in every fifth subject.
(Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies