Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The role of HDAC11 in obesity-related metabolic disorders: A critical review.

Tytuł:
The role of HDAC11 in obesity-related metabolic disorders: A critical review.
Autorzy:
Yang H; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
Chen L; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
Sun Q; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
Yao F; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
Muhammad S; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.; Department of Poultry Science, Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan.
Sun C; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
Źródło:
Journal of cellular physiology [J Cell Physiol] 2021 Aug; Vol. 236 (8), pp. 5582-5591. Date of Electronic Publication: 2021 Jan 22.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Review
Język:
English
Imprint Name(s):
Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
MeSH Terms:
Histone Deacetylase Inhibitors/*therapeutic use
Histone Deacetylases/*metabolism
Obesity/*drug therapy
Animals ; Cell Proliferation/drug effects ; Histone Deacetylases/drug effects ; Humans ; Inflammation/drug therapy
References:
Acharya, M. R., Sparreboom, A., Venitz, J., & Figg, W. D. (2005). Rational development of histone deacetylase inhibitors as anticancer agents: A review. Molecular Pharmacology, 68(4), 917-932.
Almeida, L., Tannous, M., Matsumoto, C., Sobral, L., & Leopoldino, A. (2013). Abstract 4244: Epigenetic regulation by SET protein in HNSCC: Histone acetylation versus DNA methylation. Cancer Research, 73(8), 4244.
Bae, J., Hideshima, T., Tai, Y.-T., Song, Y., Richardson, P., Raje, N., & Anderson, K. C. (2018). Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia, 32(9), 1932-1947.
Bagchi, R. A., Ferguson, B. S., Stratton, M. S., Hu, T., Cavasin, M. A., Sun, L., & McKinsey, T. A. (2018). HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight, 3(15), e120159.
Bhaskara, S. (2018). Histone deacetylase 11 as a key regulator of metabolism and obesity. EBioMedicine, 35, 27-28.
Buglio, D., Khaskhely, N. M., Voo, K. S., Martinez-Valdez, H., Liu, Y.-J., & Younes, A. (2011). HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood, 117(10), 2910-2917.
Bush, E. W., & McKinsey, T. A. (2010). Protein acetylation in the cardiorenal axis: The promise of histone deacetylase inhibitors. Circulation Research, 106(2), 272-284.
Catalioto, R. M., Maggi, C. A., & Giuliani, S. (2009). Chemically distinct HDAC inhibitors prevent adipose conversion of subcutaneous human white preadipocytes at an early stage of the differentiation program. Experimental Cell Research, 315(19), 3267-3280.
Cheng, F., Lienlaf, M., Perez-Villarroel, P., Wang, H. W., Lee, C., Woan, K., & Villagra, A. (2014). Divergent roles of histone deacetylase 6 (HDAC6) and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen presenting cells. Molecular Immunology, 60(1), 44-53.
Choi, J. K., & Howe, L. J. (2009). Histone acetylation: Truth of consequences? Biochemistry and Cell Biology, 87(1), 139-150.
Currie, E., Schulze, A., Zechner, R., Walther, T. C., & Farese, R. V. (2013). Cellular fatty acid metabolism and cancer. Cell Metabolism, 18(2), 153-161.
Dalmas, E., Venteclef, N., Caer, C., Poitou, C., Cremer, I., Aron-Wisnewsky, J., & Clement, K. (2014). T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: Relevance to obesity and type 2 diabetes. Diabetes, 63(6), 1966-1977.
Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: The link between insulin resistance, obesity and diabetes. Trends in Immunology, 25(1), 4-7.
Deubzer, H. E., Schier, M. C., Oehme, I., Lodrini, M., Haendler, B., Sommer, A., & Witt, O. (2013). HDAC11 is a novel drug target in carcinomas. International Journal of Cancer, 132(9), 2200-2208.
Downes, M., Ordentlich, P., Kao, H.-Y., Alvarez, J. G. A., & Evans, R. M. (2000). Identification of a nuclear domain with deacetylase activity. Proceedings of the National Academy of Sciences of the United States of America, 97(19), 10330-10335.
Dudakovic, A., Camilleri, E. T., Lewallen, E. A., McGee-Lawrence, M. E., Riester, S. M., Kakar, S., & van Wijnen, A. J. (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. Journal of Cellular Physiology, 230(1), 52-62.
Estampador, A. C., & Franks, P. W. (2020). Precision medicine in obesity and type 2 diabetes: The relevance of early-life exposures. Clinical Chemistry, 64, 130-141.
Fajas, L., Egler, V., Reiter, R., Hansen, J., & Auwerx, J. (2003). The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation. Developmental Cell, 3(6), 903-910.
Feng, W., Lu, Z., Luo, R. Z., Zhang, X., Seto, E., Liao, W. S. L., & Yu, Y. (2007). Multiple histone deacetylases repress tumor suppressor gene ARHI in breast cancer. International Journal of Cancer, 120(8), 1664-1668.
Ferrari, A., Fiorino, E., Longo, R., Barilla, S., Mitro, N., Cermenati, G., & Crestani, M. (2017). Attenuation of diet-induced obesity and induction of white fat browning with a chemical inhibitor of histone deacetylases. International Journal of Obesity, 41(2), 289-298.
Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J. P., Barsyte-Lovejoy, D., & Knapp, S. (2012). Histone recognition and large-scale structural analysis of the human bromodomain family. Cell, 149(1), 214-231.
Fischle, W., Dequiedt, F., Hendzel, M. J., Guenther, M. G., Lazar, M. A., Voelter, W., & Verdin, E. (2002). Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Molecular Cell, 9(1), 45-57.
Fu, J.-F. (2019). Big challenges: Obesity and type 2 diabetes in children and adolescents. World Journal of Pediatrics, 15, 313-314.
Gao, L., Cueto, M. A., Asselbergs, F., & Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. Journal of Biological Chemistry, 277(28), 25748-25755.
Georgopoulos, K. (2009). From immunity to tolerance through HDAC. Nature Immunology, 10(1), 13-14.
Gesta, S., Tseng, Y.-H., & Kahn, C. R. (2007). Developmental origin of fat: Tracking obesity to its source. Cell, 131(2), 0-256.
Gong, F. D., & Miller, K. M. (2013). Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 750(1-2), 23-30.
Gregoretti, I., Lee, Y. M., & Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology, 338(1), 17-31.
Guan, K. L., & Xiong, Y. (2011). Regulation of intermediary metabolism by protein acetylation. Trends in Biochemical Sciences, 36(2), 108-116.
Haberland, M., Carrer, M., Mokalled, M. H., Montgomery, R. L., & Olson, E. N. (2010). Redundant control of adipogenesis by histone deacetylases 1 and 2. Journal of Biological Chemistry, 285(19), 14663-14670.
Harms, M., & Seale, P. (2013). Brown and beige fat: Development, function and therapeutic potential. Nature Medicine, 19(10), 1252-1263.
Hassig, C. A., & Schreiber, S. L. (1997). Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Current Opinion in Chemical Biology, 1(3), 300-308.
Hirschey, M. D., Shimazu, T., Jing, E., Grueter, C. A., Collins, A. M., Aouizerat, B., & Verdin, E. (2011). SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Molecular Cell, 44(2), 177-190.
Hossain, P., Kawar, B., & El Nahas, M. (2007). Obesity and diabetes in the developing world-A growing challenge. New England Journal of Medicine, 356(3), 213-215.
Hotamisligil, G. S. (2005). Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes, 54, S73-S78.
Houtkooper, R. H., Eija, P., & Johan, A. (2012). Sirtuins as regulators of metabolism and healthspan. Nature Reviews Molecular Cell Biology, 13(4), 225-238.
Hui, J., & Lin, H. (2015). Sirtuins in epigenetic regulation. Chemical Reviews, 115(6), 2350-2375.
Iyengar, N. M., Gucalp, A., Dannenberg, A. J., & Hudis, C. A. (2016). Obesity and cancer mechanisms: Tumor microenvironment and inflammation. Journal of Clinical Oncology, 34(35), 4270-4276.
James, A. W. (2013). Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica, 2013, 684736.
Ji, C., Lei, S., Aramsangtienchai, P., Spiegelman, N. A., Zhang, X., Seto, E., & Lin, H. (2019). HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proceedings of the National Academy of Sciences of the United States of America, 116(12), 5487-5492.
Joshi, P., Greco, T. M., Guise, A. J., Luo, Y., Yu, F., Nesvizhskii, A. I., & Cristea, I. M. (2013). The functional interactome landscape of the human histone deacetylase family. Molecular Systems Biology, 9(1), 672.
Kim, J. I., Jung, K.-J., Jang, H.-S., & Park, K. M. (2013). Gender-specific role of HDAC11 in kidney ischemia- and reperfusion-induced PAI-1 expression and injury. American Journal of Physiology. Renal Physiology, 305(1), F61-F70.
Klier, H., Schricker, R., Strobel, G., Bandlow, W., Magdolen, V., & Lottspeich, F. (1996). Cytoplasmic and mitochondrial forms of yeast adenylate kinase 2 are N-acetylated. Biochimica et Biophysica Acta, 1280(2), 251-256.
Knutson, S. K., Chyla, B. J., Amann, J. M., Bhaskara, S., Huppert, S. S., & Hiebert, S. W. (2008). Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO Journal, 27(7), 1017-1028.
Kuhn, E., Binart, N., & Lombès, M. (2012). Brown, white, beige: The color of fat and new therapeutic perspectives for obesity. Annales d'Endocrinologie, 73, S2-S8.
Kurat, C. F., Lambert, J. P., Petschnigg, J., Friesen, H., Pawson, T., Rosebrock, A., & Andrews, B. (2014). Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proceedings of the National Academy of Sciences of the United States of America, 111(39), 14124-14129.
Kutil, Z., Novakova, Z., Meleshin, M., Mikesova, J., Schutkowski, M., & Barinka, C. (2018). Histone deacetylase 11 is a fatty-acid deacylase. ACS Chemical Biology, 13(3), 685-693.
Laimer, M., Ebenbichler, C. F., Kaser, S., Sandhofer, A., Weiss, H., Nehoda, H., & Patsch, J. R. (2002). Markers of chronic inflammation and obesity: A prospective study on the reversibility of this association in middle-aged women undergoing weight loss by surgical intervention. International Journal of Obesity, 26(5), 659-662.
Lawrence, M., Daujat, S., & Schneider, R. (2016). Lateral thinking: How histone modifications regulate gene expression. Trends in Genetics, 32(1), 42-56.
Lee, D. Y. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell, 72(1), 73-84.
Lee, Y.-M., Yoon, Y., Yoon, H., Park, H.-M., Song, S., & Yeum, K.-J. (2017). Dietary anthocyanins against obesity and inflammation. Nutrients, 9(10), 1089.
Lei, S., Caralina, M.dE., Ka, B., Alexandra, A., Elphine, T., Huadong, P., & Edward, S. (2018). Programming and regulation of metabolic homeostasis by HDAC11. EBioMedicine, 33, 157-168.
Li, X. (2013). SIRT1 and energy metabolism. Acta Biochimica et Biophysica Sinica, 45(1), 51-60.
Li, S., Fossati, G., Marchetti, C., Modena, D., Pozzi, P., Reznikov, L. L., & Dinarello, C. A. (2015). Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo. Journal of Biological Chemistry, 290(4), 2368-2378.
Lian, Z.-R., Xu, Y.-F., Wang, X.-B., Gong, J.-P., & Liu, Z.-J. (2012). Suppression of histone deacetylase 11 promotes expression of IL-10 in Kupffer cells and induces tolerance following orthotopic liver transplantation in rats. The Journal of Surgical Research, 174(2), 359-368.
Liu, H., Hu, Q., D'Ercole, A. J., & Ye, P. (2009). Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. GLIA, 57(1), 1-12.
Liu, H., Hu, Q., Kaufman, A., D'Ercole, A. J., & Ye, P. (2008). Developmental expression of histone deacetylase 11 in the murine brain. Journal of Neuroscience Research, 86(3), 537-543.
Luo, X.-Q., Shao, J.-B., Xie, R.-D., Zeng, L., Li, X.-X., Qiu, S.-Q., & Yang, P.-C. (2017). Micro RNA-19a interferes with IL-10 expression in peripheral dendritic cells of patients with nasal polyposis. Oncotarget, 8(30), 48915-48921.
Madhusoodanan, M., Shilong, Z., Tien, H., & Guangdi, W. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 20(3), 3898-3941.
Magee, C., Grieve, D. J., Watson, C. J., & Brazil, D. P. (2017). Diabetic nephropathy: A tangled web to unweave. Cardiovascular Drugs and Therapy, 31(5-6), 579-592.
Maolanon, A. R., Kristensen, H. M., Leman, L. J., Ghadiri, M. R., & Olsen, C. A. (2017). Natural and synthetic macrocyclic inhibitors of the histone deacetylase enzymes. ChemBioChem, 18(1), 5-49.
Mcphee, J. B., & Schertzer, J. D. (2015). Immunometabolism of obesity and diabetes: Microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clinical Science, 129(12), 1083-1096.
Michael, H., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics, 10(1), 32-42.
Moreno, J. A., Gomez-Guerrero, C., Mas, S., Sanz, A. B., Lorenzo, O., Ruiz-Ortega, M., & Egido, J. (2018). Targeting inflammation in diabetic nephropathy: A tale of hope. Expert Opinion on Investigational Drugs, 27(11), 917-930.
Moreno-Yruela, C., Galleano, I., Madsen, A. S., & Olsen, C. A. (2018). Histone deacetylase 11 Is an ε-N-myristoyllysine hydrolase. Cell chemical biology, 25(7), 849-856.
Moseti, D., Regassa, A., & Kim, W. K. (2016). Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. International Journal of Molecular Sciences, 17(1), 124.
Mrug, M., & Sanders, P. W. (2013). Beware the low HDAC11: Males at risk for ischemic kidney injury. American journal of physiology. Renal Physiology, 305(7), F973-F974.
Nakatani, Y. (2010). Histone acetylases-versatile players. Genes to Cells, 6(2), 79-86.
Narita, T., Weinert, B. T., & Choudhary, C. (2019). Functions and mechanisms of non-histone protein acetylation. Nature Reviews Molecular Cell Biology, 20(3), 156-174.
Okamura, M., Inagaki, T., Tanaka, T., & Sakai, J. (2010). Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis, 6(1), 24-32.
Panagiotakos, D. B., Pitsavos, C., Yannakoulia, M., Chrysohoou, C., & Stefanadis, C. (2005). The implication of obesity and central fat on markers of chronic inflammation: The ATTICA study. Atherosclerosis, 183(2), 308-315.
Paueksakon, P., Revelo, M. P., Ma, L.-J., Marcantoni, C., & Fogo, A. B. (2002). Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney International, 61(6), 2142-2148.
Pfeifer, A., & Hoffmann, L. S. (2015). Brown, beige, and white: The new color code of fat and its pharmacological implications. Annual Review of Pharmacology, 55(1), 207-227.
Ramos-Nino, M. E. (2013). The role of chronic inflammation in obesity-associated cancers. ISRN Oncology, 2013, 697521.
Result, A. A., & Dramatically, H. I. (2011). Epigenetic regulation of mesenchymal stem cells: A focus on osteogenic and adipogenic differentiation. Stem Cells International, 2011, 201371.
Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology, 7(12), 885-896.
Rosen, E. D., & Spiegelman, B. M. (2014). What we talk about when we talk about fat. Cell, 156(1-2), 20-44.
Saltiel, A. R., & Olefsky, J. M. (2017). Inflammatory mechanisms linking obesity and metabolic disease. The Journal of Clinical Investigation, 127(1), 1-4.
Santos, C. R., & Schulze, A. (2012). Lipid metabolism in cancer. FEBS Journal, 279(15), 2610-2623.
Sarkar, S., Longacre, M., Tatur, N., Heerboth, S., & Lapinska, K. (2000). Histone deacetylases (HDACs): Function, mechanism, & inhibition. John Wiley & Sons, Ltd.
Scott, I. (2012). Regulation of cellular homoeostasis by reversible lysine acetylation. Essays in Biochemistry, 52, 13-22.
Selvi, R. B., & Kundu, T. K. (2009). Reversible acetylation of chromatin: Implication in regulation of gene expression, disease and therapeutics. Biotechnology Journal, 4(3), 375-390.
Shukla, V., Vaissière, T., & Herceg, Z. (2008). Histone acetylation and chromatin signature in stem cell identity and cancer. Mutation Research, 637(1-2), 1-15.
Sidossis, L., & Kajimura, S. (2015). Brown and beige fat in humans: Thermogenic adipocytes that control energy and glucose homeostasis. Journal of Clinical Investigation, 125(2), 478-486.
Spracklen, C. N., Horikoshi, M., Kim, Y. J., Lin, K., Bragg, F., Moon, S., & Sim, X. (2020). Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature, 582(7811), 240-245.
Sun, L., Marin de Evsikova, C., Bian, K., Achille, A., Telles, E., Pei, H., & Seto, E. (2018). Programming and Regulation of Metabolic Homeostasis by HDAC11. EBioMedicine, 33, 157-168.
Sun, Z., Miller, R. A., Patel, R. T., Chen, J., Dhir, R., Wang, H., & Lazar, M. A. (2012). Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nature Medicine, 18(6), 934-942.
Tao, R., de Zoeten, E. F., Ozkaynak, E., Chen, C., Wang, L., Porrett, P. M., & Hancock, W. W. (2007). Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Medicine, 13(11), 1299-1307.
Terova, G., Díaz, N., Rimoldi, S., Ceccotti, C., Gliozheni, E., & Piferrer, F. (2016). Effects of sodium butyrate treatment on histone modifications and the expression of genes related to epigenetic regulatory mechanisms and immune response in european sea bass (Dicentrarchus labrax) fed a plant-based diet. PLoS One, 11(7), e0160332.
Van Dyke, M. W. (2014). Lysine deacetylase (KDAC) regulatory pathways: An alternative approach to selective modulation. ChemMedChem, 9(3), 511-522.
Ververis, K., Hiong, A., Karagiannis, T. C., & Licciardi, P. V. (2013). Histone deacetylase inhibitors (HDACIs): Multitargeted anticancer agents. Biologics Targets & Therapy. 7(default), 47-60.
Vigushin, D. M., & Coombes, R. C. (2002). Histone deacetylase inhibitors in cancer treatment. Anti-Cancer Drugs, 13(1), 1-13.
Villagra, A., Cheng, F., Wang, H.-W., Suarez, I., Glozak, M., Maurin, M., & Bhalla, K. (2009). The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nature Immunology, 10(1), 92-100.
Wang, H., Cheng, F., Nguyen, D., Suarez, I., Wright, K., Atadja, A. P., & Sotomayor, E. M. (2007). A novel role of histone deacetylase 11 (HDAC11) in the regulation of IL-10 production and immune tolerance mediated by antigen-presenting cells. Blood, 110(11), 1330.
Wang, L., Tao, R., & Hancock, W. W. (2009). Using histone deacetylase inhibitors to enhance Foxp3(+) regulatory T-cell function and induce allograft tolerance. Immunology and Cell Biology, 87(3), 195-202.
Wang, X., Wu, Y., Jiao, J., & Huang, Q. (2018). Mycobacterium tuberculosis infection induces IL-10 gene expression by disturbing histone deacetylase 6 and histonedeacetylase 11 equilibrium in macrophages. Tuberculosis, 108, 118-123.
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., & Zhao, K. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 40(7), 897-903.
West, A. G., & Fraser, P. (2005). Remote control of gene transcription. Human Molecular Genetics, 14, R101-R111.
Wu, H., & Ballantyne, C. M. (2017). Skeletal muscle inflammation and insulin resistance in obesity. The Journal of Clinical Investigation, 127(1), 43-54.
Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., & Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. The Journal of Clinical Investigation, 112(12), 1821-1830.
Yanginlar, C., & Logie, C. (2018). HDAC11 is a regulator of diverse immune functions. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1861(1), 54-59.
Yoo, E. J., Chung, J. J., Choe, S. S., Kim, K. H., & Kim, J. B. (2006). Down-regulation of histone deacetylases stimulates adipocyte differentiation. Journal of Biological Chemistry, 281(10), 6608-6615.
Yu, F.-N., Hu, M.-L., Wang, X.-F., Li, X.-P., Zhang, B.-H., Lu, X.-Q., & Wang, R.-Q. (2019). Effects of microRNA-370 on mesangial cell proliferation and extracellular matrix accumulation by binding to canopy 1 in a rat model of diabetic nephropathy. Journal of Cellular Physiology, 234(5), 6898-6907.
Zheng, Z., & Zheng, F. (2016). Immune cells and inflammation in diabetic nephropathy. Journal of Diabetes Research, 2016, 1841690.
Zhou, Y., Peng, J., & Jiang, S. (2014). Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis. European Journal of Cell Biology, 93(4), 170-177.
Zhou, Y. T., Wang, Z.-W., Higa, M., Newgard, C. B., & Unger, R. H. (1999). Reversing adipocyte differentiation: Implications for treatment of obesity. Proceedings of the National Academy of Sciences of the United States of America, 96(5), 2391-2395.
Contributed Indexing:
Keywords: HDAC11; metabolic inflammation; obesity
Substance Nomenclature:
0 (Histone Deacetylase Inhibitors)
EC 3.5.1.98 (HDAC11 protein, human)
EC 3.5.1.98 (Histone Deacetylases)
Entry Date(s):
Date Created: 20210122 Date Completed: 20211019 Latest Revision: 20211019
Update Code:
20240105
DOI:
10.1002/jcp.30286
PMID:
33481312
Czasopismo naukowe
At present, metabolic diseases, such as obesity and diabetes, have become the world's top health threats. These diseases are closely related to the abnormal development and function of adipocytes and metabolic inflammation associated with obesity. Histone deacetylase 11 (HDAC11), with a relatively unique structure and function in the HDAC family, plays a vital role in regulating cell growth, migration, and cell death. Currently, research on new key regulatory functions of HDAC11 in metabolic homeostasis is receiving more and more attention, and HDAC11 has also become a potential therapeutic target in the treatment of obesity and obesity-related diseases. Here, we summarized the latest literature on the role of HDAC11 in regulating the progress of obesity-related metabolic disorders.
(© 2021 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies