Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Biodegradable nanoparticles from prosopisylated cellulose as a platform for enhanced oral bioavailability of poorly water-soluble drugs.

Tytuł:
Biodegradable nanoparticles from prosopisylated cellulose as a platform for enhanced oral bioavailability of poorly water-soluble drugs.
Autorzy:
Kenechukwu FC; Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Instituto de Macromoléculas Professora Eloisa Mano (IMA), Programa de Ciencia e Tecnologia de Polimeros, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Brazil. Electronic address: .
Dias ML; Instituto de Macromoléculas Professora Eloisa Mano (IMA), Programa de Ciencia e Tecnologia de Polimeros, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Brazil.
Ricci-Júnior E; Nanomedicines Unit, Facultade de Pharmacia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil.
Źródło:
Carbohydrate polymers [Carbohydr Polym] 2021 Mar 15; Vol. 256, pp. 117492. Date of Electronic Publication: 2020 Dec 19.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <1992-> : Barking : Elsevier Applied Science Publishers
Original Publication: London [Eng.] : Applied Science Publishers, c1981-
MeSH Terms:
Administration, Oral*
Solubility*
Biocompatible Materials/*chemistry
Cellulose/*chemistry
Nanoparticles/*chemistry
Water/*chemistry
Animals ; Biological Availability ; Buffers ; Drug Carriers/chemistry ; Drug Compounding ; Drug Delivery Systems ; Drug Liberation ; Female ; Griseofulvin/chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Male ; Nanotechnology/methods ; Particle Size ; Rabbits
Contributed Indexing:
Keywords: Acetone (PubChem CID: 180); Acetonitrile (PubChem CID: 18373917); Enhanced oral bioavailability; Ethanol (PubChem CID: 702); Griseofulvin (PubChem CID: 441140); Griseofulvin-loaded nanoparticles; High shear homogenization-nanoprecipitation technique; Hydrochloric acid (PubChem CID: 313); Microcrystalline cellulose (MCC); Microcrystalline cellulose (PubChem CID: 14055602); Phosphotungstic acid (PubChem CID: 16212977); Polyethylene glycol 400 (PubChem CID: 78255); Propylene glycol (PubChem CID: 1030); Prosopis africanagum (PG); Prosopisylated cellulose; Sodium hydroxide (PubChem CID: 14798); Thermo-regulated coacervation
Substance Nomenclature:
0 (Biocompatible Materials)
0 (Buffers)
0 (Drug Carriers)
059QF0KO0R (Water)
32HRV3E3D5 (Griseofulvin)
9004-34-6 (Cellulose)
OP1R32D61U (microcrystalline cellulose)
Entry Date(s):
Date Created: 20210123 Date Completed: 20210520 Latest Revision: 20210520
Update Code:
20240105
DOI:
10.1016/j.carbpol.2020.117492
PMID:
33483021
Czasopismo naukowe
Bio-inspired nanotechnology-based strategies are potential platforms for enhanced dissolution and oral biovailability of poorly water-soluble drugs. In this study, a recently patented green biopolymer (Prosopis africana gum, PG) was compatibilized with microcrystalline cellulose (MCC), a conventional polysaccharide, via thermo-regulated coacervation to obtain PG-MCC (1:0, 1:1, 1:2, 2:1, and 0:1) rational blends and the nanoparticles developed with optimized (1:1) biocomposites (termed "prosopisylated cellulose") by combined homogenization-nanoprecipitation technique was engineered as a high circulating system for improved oral bioavailability of griseofulvin (GF), a model Biopharmaceutics Classification System (BCS) Class-II drug. The effects of biopolymer interaction on morphological and microstructural properties of drug-free biocomposites obtained were investigated by Fourier transform infra-red spectroscopy, scanning electron microscopy and x-ray diffractometry, while the physicochemical properties and in-vivo pharmacokinetics of GF-loaded nanoparticles were also ascertained. Optimized biocomposites revealed inter-molecular and intra-molecular hydrogen bonding between the hydroxyl group of MCC and polar components of PG, as well as reduction in crystallinity of MCC. Griseofulvin-loaded nanoparticles were stable, displayed particles with relatively smooth surfaces and average size of 26.18 ± 0.94 . nm, with zeta potential and polydispersity index of 32.1 ± 0.57 mV and 0.173 ± 0.06, respectively. Additionally, the nanoparticles showed good entrapment efficiency (86.51 ± 0.93 %), and marked improvement in griseofulvin dissolution when compared to free drug, with significantly (p < 0.05) higher GF release in basic than acidic PEG-reinforced simulated bio-microenvironments. Besides, x-ray diffractogram of GF-loaded nanoparticles showed amorphization with few characteristic peaks of GF while infra-red spectrum indicated broader principal peaks of GF and components compatibility. Furthermore, GF-loaded nanoparticles showed low plasma clearance with three-fold increase in systemic bioavailability of griseofulvin compared with free drug. These results showed that prosopisylated cellulose nanoparticles would be a facile approach to improve oral bioavailability of BCS class-II drugs and can be pursued as a new versatile drug delivery platform.
(Copyright © 2020 Elsevier Ltd. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies