Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Pleiotropy and epistasis within and between signaling pathways defines the genetic architecture of fungal virulence.

Tytuł:
Pleiotropy and epistasis within and between signaling pathways defines the genetic architecture of fungal virulence.
Autorzy:
Roth C; Department of Biology, Duke University, Durham, North Carolina, United States of America.; University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America.
Murray D; Department of Biology, Duke University, Durham, North Carolina, United States of America.
Scott A; Department of Biology, Duke University, Durham, North Carolina, United States of America.
Fu C; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
Averette AF; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
Sun S; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
Heitman J; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
Magwene PM; Department of Biology, Duke University, Durham, North Carolina, United States of America.
Źródło:
PLoS genetics [PLoS Genet] 2021 Jan 25; Vol. 17 (1), pp. e1009313. Date of Electronic Publication: 2021 Jan 25 (Print Publication: 2021).
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, c2005-
MeSH Terms:
Cryptococcosis/*genetics
Cryptococcus neoformans/*genetics
Epistasis, Genetic/*genetics
Genetic Pleiotropy/*genetics
Chromosome Mapping ; Cryptococcosis/microbiology ; Cryptococcus neoformans/pathogenicity ; Drug Resistance, Fungal/genetics ; Genotype ; Humans ; Quantitative Trait Loci/genetics ; Signal Transduction/genetics ; Virulence/genetics
References:
Lancet Infect Dis. 2017 Aug;17(8):873-881. (PMID: 28483415)
Antimicrob Agents Chemother. 2004 Mar;48(3):985-91. (PMID: 14982793)
J Fungi (Basel). 2017 Sep 23;3(4):. (PMID: 29371567)
PLoS Genet. 2014 May 01;10(5):e1004324. (PMID: 24784154)
Adv Appl Microbiol. 2009;67:131-90. (PMID: 19245939)
Infect Immun. 2013 Jul;81(7):2626-37. (PMID: 23670559)
Eukaryot Cell. 2009 Aug;8(8):1197-217. (PMID: 19542307)
FEMS Yeast Res. 2015 Nov;15(7):. (PMID: 26242402)
G3 (Bethesda). 2014 Oct 29;4(12):2519-33. (PMID: 25360032)
Genetics. 2013 Feb;193(2):587-600. (PMID: 23172850)
Res Microbiol. 2014 Jul-Aug;165(6):399-410. (PMID: 24751576)
Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
mBio. 2010 May 18;1(1):. (PMID: 20689742)
G3 (Bethesda). 2014 Jan 28;4(5):769-77. (PMID: 24474169)
Eukaryot Cell. 2006 Jul;5(7):1147-56. (PMID: 16835458)
Front Microbiol. 2018 Feb 06;9:132. (PMID: 29467743)
Infect Dis Clin North Am. 2002 Dec;16(4):837-74, v-vi. (PMID: 12512184)
PLoS One. 2015 Sep 14;10(9):e0137750. (PMID: 26368573)
Genetica. 2001;112-113:87-104. (PMID: 11838789)
Am J Epidemiol. 1977 Jun;105(6):582-6. (PMID: 326036)
Genetics. 2018 Apr;208(4):1357-1372. (PMID: 29444806)
Infect Immun. 1989 Dec;57(12):3751-6. (PMID: 2680980)
FEMS Microbiol Lett. 1997 Aug 15;153(2):265-72. (PMID: 9271852)
Genome Res. 2017 Feb;27(2):320-333. (PMID: 27864351)
G3 (Bethesda). 2016 Sep 08;6(9):2745-59. (PMID: 27371951)
G3 (Bethesda). 2018 Nov 6;8(11):3529-3538. (PMID: 30213866)
Eukaryot Cell. 2007 Mar;6(3):413-20. (PMID: 17189488)
Genetics. 2012 Nov;192(3):1123-32. (PMID: 22942125)
Fungal Genet Biol. 2015 May;78:16-48. (PMID: 25721988)
Am Nat. 2004 Nov;164 Suppl 5:S52-63. (PMID: 15540141)
Open Forum Infect Dis. 2019 Oct 1;6(10):. (PMID: 31420668)
Genetics. 1996 Jun;143(2):1013-20. (PMID: 8725246)
Antimicrob Agents Chemother. 2012 Jun;56(6):3107-13. (PMID: 22391546)
Genetics. 2011 Sep;189(1):165-76. (PMID: 21750256)
Front Cell Infect Microbiol. 2019 Jun 18;9:212. (PMID: 31275865)
Eukaryot Cell. 2014 Sep;13(9):1200-6. (PMID: 25016004)
Clin Microbiol Rev. 2012 Jul;25(3):387-408. (PMID: 22763631)
mBio. 2011 Feb 08;2(1):e00342-10. (PMID: 21304167)
J Fungi (Basel). 2018 Jun 08;4(2):. (PMID: 29890663)
Eukaryot Cell. 2002 Feb;1(1):75-84. (PMID: 12455973)
FEMS Yeast Res. 2006 Jun;6(4):463-8. (PMID: 16696642)
Genetics. 1989 Jan;121(1):185-99. (PMID: 2563713)
Front Microbiol. 2017 May 09;8:755. (PMID: 28536555)
Genome Res. 2015 May;25(5):762-74. (PMID: 25840857)
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):662-7. (PMID: 21199943)
PLoS Comput Biol. 2011 Nov;7(11):e1002255. (PMID: 22072954)
J Infect Dis. 2005 Sep 1;192(5):888-92. (PMID: 16088839)
Annu Rev Microbiol. 2009;63:291-310. (PMID: 19575560)
Genetics. 2013 Aug;194(4):997-1016. (PMID: 23770698)
Nature. 2012 Apr 11;484(7393):186-94. (PMID: 22498624)
Cell. 2004 Feb 6;116(3):405-15. (PMID: 15016375)
PLoS One. 2013 May 14;8(5):e62790. (PMID: 23690954)
Eukaryot Cell. 2009 Mar;8(3):353-61. (PMID: 19151324)
Sci Transl Med. 2012 Dec 19;4(165):165rv13. (PMID: 23253612)
Fungal Genet Biol. 2015 Jul;80:53-67. (PMID: 25979163)
Eukaryot Cell. 2007 Dec;6(12):2169-74. (PMID: 17951515)
Evolution. 2008 May;62(5):1229-42. (PMID: 18266991)
Curr Biol. 2006 Nov 7;16(21):2161-5. (PMID: 17084702)
PLoS Genet. 2008 Apr 11;4(4):e1000046. (PMID: 18404212)
FEMS Microbiol Rev. 2001 Apr;25(2):245-68. (PMID: 11250036)
Front Cell Infect Microbiol. 2019 Jul 15;9:248. (PMID: 31380293)
Mol Microbiol. 2010 May;76(3):662-76. (PMID: 20345666)
J Infect. 2005 Jul;51(1):10-6. (PMID: 15979484)
Genetics. 1990 Apr;124(4):979-93. (PMID: 2323560)
FEBS Lett. 2009 Dec 17;583(24):4025-9. (PMID: 19878680)
Genetics. 2004 Jun;167(2):619-31. (PMID: 15238516)
Annu Rev Genet. 2002;36:557-615. (PMID: 12429703)
Genome Res. 2015 Mar;25(3):413-25. (PMID: 25504520)
Genetics. 2014 Aug;197(4):1409-16. (PMID: 24931408)
PLoS Genet. 2012 Jul;8(7):e1002810. (PMID: 22792079)
Genetics. 2002 Aug;161(4):1751-62. (PMID: 12196415)
Eukaryot Cell. 2012 Jun;11(6):708-17. (PMID: 22544903)
Genetics. 2019 Apr;211(4):1469-1482. (PMID: 30787041)
Front Plant Sci. 2018 Jul 09;9:887. (PMID: 30038630)
Nat Rev Neurol. 2017 Jan;13(1):13-24. (PMID: 27886201)
Fungal Genet Biol. 2006 Aug;43(8):531-44. (PMID: 16714127)
J Math Biol. 1989;27(4):429-50. (PMID: 2769086)
PLoS Genet. 2014 Dec 11;10(12):e1004849. (PMID: 25503976)
Drug Resist Updat. 1999 Aug;2(4):259-269. (PMID: 11504497)
Fungal Genet Biol. 2015 May;78:55-8. (PMID: 25256589)
Genetics. 2013 Nov;195(3):1103-15. (PMID: 23979575)
PLoS One. 2007 Jun 20;2(6):e554. (PMID: 17579725)
G3 (Bethesda). 2014 Oct 09;4(12):2365-79. (PMID: 25305041)
Curr Opin Microbiol. 2000 Aug;3(4):354-8. (PMID: 10972493)
G3 (Bethesda). 2015 Nov 03;6(1):79-86. (PMID: 26530421)
J Am Med Inform Assoc. 2013 Jul-Aug;20(4):630-6. (PMID: 23396514)
PLoS One. 2009 Jun 10;4(6):e5862. (PMID: 19517012)
PLoS Negl Trop Dis. 2020 Mar 31;14(3):e0008137. (PMID: 32231354)
Front Plant Sci. 2018 Nov 13;9:1632. (PMID: 30483289)
PLoS One. 2017 Jun 5;12(6):e0178691. (PMID: 28582419)
Microbiology (Reading). 1996 Apr;142 ( Pt 4):937-943. (PMID: 8936320)
Genetics. 2013 Oct;195(2):513-25. (PMID: 23934881)
Infect Immun. 1994 Dec;62(12):5694-7. (PMID: 7960156)
Methods Enzymol. 2007;428:29-45. (PMID: 17875410)
Nat Chem Biol. 2014 May;10(5):400-6. (PMID: 24681535)
Science. 2005 Feb 25;307(5713):1321-4. (PMID: 15653466)
Genetics. 1994 Nov;138(3):963-71. (PMID: 7851788)
Fungal Genet Biol. 2010 Aug;47(8):721-6. (PMID: 20546911)
Science. 2010 Aug 6;329(5992):679-82. (PMID: 20689016)
Heredity (Edinb). 2011 Jan;106(1):124-33. (PMID: 20332806)
New Phytol. 2020 Sep;227(6):1696-1708. (PMID: 32202657)
PLoS Pathog. 2010 Apr 22;6(4):e1000850. (PMID: 20421942)
Mycoses. 2016 Sep;59(9):576-84. (PMID: 27061834)
PLoS Genet. 2018 Nov 2;14(11):e1007744. (PMID: 30388117)
Mol Ecol. 2000 Oct;9(10):1471-81. (PMID: 11050543)
Infect Immun. 2019 Apr 23;87(5):. (PMID: 30833336)
PLoS Genet. 2006 Nov 17;2(11):e187. (PMID: 17112316)
PLoS One. 2011 Apr 29;6(4):e19325. (PMID: 21559404)
PLoS Pathog. 2011 Dec;7(12):e1002411. (PMID: 22174677)
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2234-9. (PMID: 22308411)
PLoS One. 2014 Aug 05;9(8):e104432. (PMID: 25093333)
Cell Microbiol. 2008 Oct;10(10):2043-57. (PMID: 18554313)
Curr Infect Dis Rep. 2011 Jun;13(3):256-61. (PMID: 21461678)
J Bacteriol. 1993 Mar;175(5):1405-11. (PMID: 8444802)
Mol Biol Cell. 2006 Jul;17(7):3122-35. (PMID: 16672377)
Eukaryot Cell. 2008 Jan;7(1):58-67. (PMID: 18039940)
AJR Am J Roentgenol. 2005 Sep;185(3):622-6. (PMID: 16120909)
PLoS Pathog. 2011 Jul;7(7):e1002136. (PMID: 21814511)
Microbes Infect. 2011 Oct;13(11):895-907. (PMID: 21684347)
PLoS Biol. 2005 May;3(5):e135. (PMID: 15799711)
Infect Immun. 2004 Aug;72(8):4731-40. (PMID: 15271935)
Biometrics. 2009 Mar;65(1):30-9. (PMID: 18537950)
Elife. 2019 Oct 24;8:. (PMID: 31647408)
Bioinformatics. 2011 Nov 1;27(21):2987-93. (PMID: 21903627)
Genetics. 2006 Aug;173(4):2339-56. (PMID: 16751670)
Mem Inst Oswaldo Cruz. 2018;113(7):e170391. (PMID: 29513785)
Mol Plant Pathol. 2018 Jun;19(6):1523-1536. (PMID: 29045052)
Mycologia. 1976 Jul-Aug;68(4):943-6. (PMID: 790173)
PLoS Genet. 2012;8(3):e1002570. (PMID: 22438822)
Mycopathologia. 2018 Apr;183(2):371-380. (PMID: 29064061)
PLoS One. 2012;7(6):e38326. (PMID: 22719877)
Theor Appl Genet. 2012 Aug;125(3):419-35. (PMID: 22622521)
FEMS Microbiol Lett. 1994 Sep 15;122(1-2):39-42. (PMID: 7958776)
PLoS Pathog. 2013;9(11):e1003741. (PMID: 24278014)
J Clin Microbiol. 2014 Jun;52(6):2061-70. (PMID: 24696030)
G3 (Bethesda). 2018 Jan 4;8(1):239-251. (PMID: 29138237)
PLoS Genet. 2014 Apr 17;10(4):e1004261. (PMID: 24743168)
Sci Rep. 2016 Aug 09;6:31145. (PMID: 27503169)
Cell Syst. 2019 May 22;8(5):363-379.e3. (PMID: 31054809)
Adv Appl Microbiol. 2014;87:1-41. (PMID: 24581388)
Physiol Genomics. 2003 Aug 15;14(3):241-9. (PMID: 12923301)
Infect Immun. 1992 Feb;60(2):602-5. (PMID: 1730495)
Infect Immun. 1986 Jan;51(1):218-23. (PMID: 3079732)
Eukaryot Cell. 2004 Feb;3(1):14-26. (PMID: 14871933)
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15245-50. (PMID: 11742090)
Nature. 2009 Jun 4;459(7247):657-62. (PMID: 19465905)
Heredity (Edinb). 2004 Jun;92(6):569-78. (PMID: 15114367)
Genome Res. 2002 Apr;12(4):656-64. (PMID: 11932250)
Genome Biol. 2008;9(2):R41. (PMID: 18294377)
Genetics. 2019 Aug;212(4):1241-1258. (PMID: 31175227)
PLoS Genet. 2017 Nov 27;13(11):e1007113. (PMID: 29176784)
Pest Manag Sci. 2001 May;57(5):437-42. (PMID: 11374161)
Sci Rep. 2018 Jun 29;8(1):9824. (PMID: 29959391)
Eukaryot Cell. 2014 Oct;13(10):1290-9. (PMID: 25084863)
Eukaryot Cell. 2009 Apr;8(4):595-605. (PMID: 19181873)
Genes Dev. 1997 Dec 1;11(23):3206-17. (PMID: 9389652)
Antimicrob Agents Chemother. 2015 Dec;59(12):7197-204. (PMID: 26324276)
Antimicrob Agents Chemother. 2011 Jun;55(6):2606-11. (PMID: 21444707)
PLoS Genet. 2019 Dec 30;15(12):e1008551. (PMID: 31887136)
Eukaryot Cell. 2007 Dec;6(12):2278-89. (PMID: 17951522)
Genetics. 2014 Mar;196(3):853-65. (PMID: 24374355)
Trends Ecol Evol. 2012 Nov;27(11):637-47. (PMID: 22898151)
Eukaryot Cell. 2013 Dec;12(12):1564-77. (PMID: 24078305)
mSphere. 2018 Oct 24;3(5):. (PMID: 30355673)
Science. 2018 May 18;360(6390):739-742. (PMID: 29773744)
Med Mycol. 2017 Jan 1;55(1):24-38. (PMID: 27816905)
J Clin Microbiol. 2001 Sep;39(9):3365-7. (PMID: 11526180)
Open Forum Infect Dis. 2016 Sep 03;3(3):ofw167. (PMID: 27704021)
PLoS Genet. 2007 Oct;3(10):1975-90. (PMID: 17953489)
Infect Immun. 1994 Jul;62(7):3004-7. (PMID: 8005689)
Mol Microbiol. 2016 Oct;102(2):306-320. (PMID: 27387858)
G3 (Bethesda). 2013 Apr 9;3(4):675-686. (PMID: 23550133)
Virulence. 2019 Dec;10(1):490-501. (PMID: 31119976)
Cell. 2008 Oct 3;135(1):174-88. (PMID: 18854164)
Heredity (Edinb). 2016 Apr;116(4):384-94. (PMID: 26758189)
Sci Signal. 2014 Sep 16;7(343):re7. (PMID: 25227612)
Bioinformatics. 2019 Oct 1;35(19):3684-3692. (PMID: 30850830)
Curr Opin Microbiol. 2011 Dec;14(6):676-81. (PMID: 21962291)
Genes (Basel). 2018 Jul 02;9(7):. (PMID: 30004464)
Mol Cell Biol. 2014 Feb;34(4):673-84. (PMID: 24324006)
Eukaryot Cell. 2010 Mar;9(3):360-78. (PMID: 20097740)
G3 (Bethesda). 2016 Sep 08;6(9):3003-14. (PMID: 27371952)
PLoS Pathog. 2010 Feb 19;6(2):e1000776. (PMID: 20174553)
Mol Biol Cell. 2005 May;16(5):2285-300. (PMID: 15728721)
J Bacteriol. 1993 Nov;175(21):7102-4. (PMID: 8226653)
Front Microbiol. 2016 Dec 16;7:2014. (PMID: 28018333)
J Clin Microbiol. 2012 Jun;50(6):1918-26. (PMID: 22442325)
Front Genet. 2019 Apr 25;10:383. (PMID: 31105748)
Genetics. 2018 Jun;209(2):567-578. (PMID: 29625994)
Mol Syst Biol. 2015 Oct 07;11(10):829. (PMID: 26446933)
AIDS. 2009 Feb 20;23(4):525-30. (PMID: 19182676)
Genetics. 2011 Sep;189(1):305-16. (PMID: 21705752)
Infect Immun. 2005 Apr;73(4):2012-9. (PMID: 15784542)
J Exp Biol. 2014 Jan 1;217(Pt 1):144-55. (PMID: 24353214)
Infect Immun. 2009 Aug;77(8):3188-95. (PMID: 19487475)
PLoS One. 2007 May 23;2(5):e457. (PMID: 17520016)
Grant Information:
R01 AI039115 United States AI NIAID NIH HHS; R01 AI050113 United States AI NIAID NIH HHS; R01 AI133654 United States AI NIAID NIH HHS; R37 AI039115 United States AI NIAID NIH HHS
Entry Date(s):
Date Created: 20210125 Date Completed: 20210423 Latest Revision: 20240330
Update Code:
20240330
PubMed Central ID:
PMC7861560
DOI:
10.1371/journal.pgen.1009313
PMID:
33493169
Czasopismo naukowe
Cryptococcal disease is estimated to affect nearly a quarter of a million people annually. Environmental isolates of Cryptococcus deneoformans, which make up 15 to 30% of clinical infections in temperate climates such as Europe, vary in their pathogenicity, ranging from benign to hyper-virulent. Key traits that contribute to virulence, such as the production of the pigment melanin, an extracellular polysaccharide capsule, and the ability to grow at human body temperature have been identified, yet little is known about the genetic basis of variation in such traits. Here we investigate the genetic basis of melanization, capsule size, thermal tolerance, oxidative stress resistance, and antifungal drug sensitivity using quantitative trait locus (QTL) mapping in progeny derived from a cross between two divergent C. deneoformans strains. Using a "function-valued" QTL analysis framework that exploits both time-series information and growth differences across multiple environments, we identified QTL for each of these virulence traits and drug susceptibility. For three QTL we identified the underlying genes and nucleotide differences that govern variation in virulence traits. One of these genes, RIC8, which encodes a regulator of cAMP-PKA signaling, contributes to variation in four virulence traits: melanization, capsule size, thermal tolerance, and resistance to oxidative stress. Two major effect QTL for amphotericin B resistance map to the genes SSK1 and SSK2, which encode key components of the HOG pathway, a fungal-specific signal transduction network that orchestrates cellular responses to osmotic and other stresses. We also discovered complex epistatic interactions within and between genes in the HOG and cAMP-PKA pathways that regulate antifungal drug resistance and resistance to oxidative stress. Our findings advance the understanding of virulence traits among diverse lineages of Cryptococcus, and highlight the role of genetic variation in key stress-responsive signaling pathways as a major contributor to phenotypic variation.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies