Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Estimating multiple latencies in the auditory system from auditory steady-state responses on a single EEG channel.

Tytuł:
Estimating multiple latencies in the auditory system from auditory steady-state responses on a single EEG channel.
Autorzy:
Wang L; Department of Biophysics, Radboud University, Nijmegen, 6525 AJ, The Netherlands. .; Donders Centre for Neuroscience, Radboud University, Nijmegen, 6525 AJ, The Netherlands. .
Noordanus E; Department of Biophysics, Radboud University, Nijmegen, 6525 AJ, The Netherlands.; Donders Centre for Neuroscience, Radboud University, Nijmegen, 6525 AJ, The Netherlands.
van Opstal AJ; Department of Biophysics, Radboud University, Nijmegen, 6525 AJ, The Netherlands.; Donders Centre for Neuroscience, Radboud University, Nijmegen, 6525 AJ, The Netherlands.
Źródło:
Scientific reports [Sci Rep] 2021 Jan 25; Vol. 11 (1), pp. 2150. Date of Electronic Publication: 2021 Jan 25.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Electroencephalography*
Auditory Perception/*physiology
Acoustic Stimulation ; Adult ; Algorithms ; Humans ; Signal Processing, Computer-Assisted ; Signal-To-Noise Ratio
References:
Hear Res. 2017 May;348:1-15. (PMID: 28137699)
Brain Topogr. 2002 Winter;15(2):69-86. (PMID: 12537303)
PLoS One. 2019 Jan 24;14(1):e0206018. (PMID: 30677031)
Electroencephalogr Clin Neurophysiol. 1996 Feb;98(2):113-25. (PMID: 8598171)
Hear Res. 2005 Jun;204(1-2):1-15. (PMID: 15925187)
Neuroimage. 2017 Feb 15;147:43-56. (PMID: 27916666)
J Neurophysiol. 2014 Oct 15;112(8):1871-84. (PMID: 25008412)
Trends Neurosci. 2014 May;37(5):289-300. (PMID: 24726910)
Neuroimage. 2018 Feb 15;167:95-103. (PMID: 29122721)
Neuroimage. 2004 Apr;21(4):1300-19. (PMID: 15050557)
PLoS One. 2014 Jan 15;9(1):e85442. (PMID: 24454869)
J Am Acad Audiol. 2012 Mar;23(3):146-70. (PMID: 22436114)
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2744-2753. (PMID: 33085611)
J Acoust Soc Am. 2004 Dec;116(6):3581-93. (PMID: 15658709)
Front Hum Neurosci. 2020 Apr 09;14:139. (PMID: 32327989)
Clin Neurophysiol. 2005 Mar;116(3):658-68. (PMID: 15721080)
Neuroscience. 2010 May 5;167(2):540-53. (PMID: 20152886)
J Acoust Soc Am. 1996 Oct;100(4 Pt 1):2236-46. (PMID: 8865632)
IEEE Trans Biomed Eng. 2016 Dec;63(12):2629-2637. (PMID: 27362753)
J Am Acad Audiol. 2004 Nov-Dec;15(10):692-701. (PMID: 15646667)
Front Neurosci. 2018 Oct 09;12:711. (PMID: 30356712)
J Neurophysiol. 2009 Mar;101(3):1679-89. (PMID: 19109453)
Front Psychol. 2012 Jul 09;3:233. (PMID: 22787453)
J Speech Lang Hear Res. 1999 Aug;42(4):797-803. (PMID: 10450901)
J Physiol. 2011 Aug 1;589(Pt 15):3789-800. (PMID: 21624970)
Neuroimage. 2017 Feb 15;147:568-576. (PMID: 27894891)
J Assoc Res Otolaryngol. 2016 Dec;17(6):591-607. (PMID: 27628539)
Neuroimage. 2017 Mar 1;148:240-253. (PMID: 28110090)
Physiol Meas. 2017 Nov 30;38(12):2141-2163. (PMID: 29034902)
Clin Neurophysiol. 2003 Nov;114(11):2096-106. (PMID: 14580607)
J Neurosci. 2003 Oct 8;23(27):9194-8. (PMID: 14534253)
Int J Audiol. 2003 Jun;42(4):177-219. (PMID: 12790346)
Int J Neural Syst. 2016 Feb;26(1):1550031. (PMID: 26404514)
Neuroscience. 2013 Jul 23;243:104-14. (PMID: 23518221)
Neuroimage. 2019 May 1;191:303-314. (PMID: 30794868)
Physiol Rev. 2004 Apr;84(2):541-77. (PMID: 15044682)
Hear Res. 2002 Mar;165(1-2):68-84. (PMID: 12031517)
Psychophysiology. 2010 Mar 1;47(2):236-46. (PMID: 19824950)
Comput Methods Programs Biomed. 2020 Jan;183:105100. (PMID: 31622797)
Anesthesiology. 2008 Feb;108(2):233-42. (PMID: 18212568)
Hear Res. 2015 May;323:68-80. (PMID: 25660195)
Hear Res. 2000 Mar;141(1-2):57-79. (PMID: 10713496)
Hear Res. 2016 May;335:149-160. (PMID: 26994660)
Suppl Clin Neurophysiol. 2013;62:101-12. (PMID: 24053034)
Hear Res. 2015 Sep;327:9-27. (PMID: 25937134)
Nat Commun. 2016 Mar 24;7:11070. (PMID: 27009409)
J Neurosci Methods. 2012 May 30;207(1):1-16. (PMID: 22426415)
Hear Res. 2018 Mar;360:55-75. (PMID: 29472062)
Entry Date(s):
Date Created: 20210126 Date Completed: 20210916 Latest Revision: 20240330
Update Code:
20240330
PubMed Central ID:
PMC7835249
DOI:
10.1038/s41598-021-81232-5
PMID:
33495484
Czasopismo naukowe
The latency of the auditory steady-state response (ASSR) may provide valuable information regarding the integrity of the auditory system, as it could potentially reveal the presence of multiple intracerebral sources. To estimate multiple latencies from high-order ASSRs, we propose a novel two-stage procedure that consists of a nonparametric estimation method, called apparent latency from phase coherence (ALPC), followed by a heuristic sequential forward selection algorithm (SFS). Compared with existing methods, ALPC-SFS requires few prior assumptions, and is straightforward to implement for higher-order nonlinear responses to multi-cosine sound complexes with their initial phases set to zero. It systematically evaluates the nonlinear components of the ASSRs by estimating multiple latencies, automatically identifies involved ASSR components, and reports a latency consistency index. To verify the proposed method, we performed simulations for several scenarios: two nonlinear subsystems with different or overlapping outputs. We compared the results from our method with predictions from existing, parametric methods. We also recorded the EEG from ten normal-hearing adults by bilaterally presenting superimposed tones with four frequencies that evoke a unique set of ASSRs. From these ASSRs, two major latencies were found to be stable across subjects on repeated measurement days. The two latencies are dominated by low-frequency (LF) (near 40 Hz, at around 41-52 ms) and high-frequency (HF) (> 80 Hz, at around 21-27 ms) ASSR components. The frontal-central brain region showed longer latencies on LF components, but shorter latencies on HF components, when compared with temporal-lobe regions. In conclusion, the proposed nonparametric ALPC-SFS method, applied to zero-phase, multi-cosine sound complexes is more suitable for evaluating embedded nonlinear systems underlying ASSRs than existing methods. It may therefore be a promising objective measure for hearing performance and auditory cortex (dys)function.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies