Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Untangling the effect of insulin action on brain mitochondria and metabolism.

Tytuł:
Untangling the effect of insulin action on brain mitochondria and metabolism.
Autorzy:
Schell M; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.; German Center for Diabetes Research (DZD), Neuherberg, Germany.
Wardelmann K; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.; German Center for Diabetes Research (DZD), Neuherberg, Germany.; Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
Kleinridders A; Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
Źródło:
Journal of neuroendocrinology [J Neuroendocrinol] 2021 Apr; Vol. 33 (4), pp. e12932. Date of Electronic Publication: 2021 Jan 28.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Review
Język:
English
Imprint Name(s):
Publication: <2010->: Malden, MA : Wiley & Sons
Original Publication: Eynsham, Oxon, UK : Oxford University Press, c1989-
MeSH Terms:
Brain/*metabolism
Energy Metabolism/*physiology
Insulin/*metabolism
Mitochondria/*metabolism
Animals ; Neurons/metabolism ; Signal Transduction/physiology
References:
Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 2005;1:53-61.
Plum L, Schubert M, Bruning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16:59-65.
Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin action in brain regulates systemic metabolism and brain function. Diabetes. 2014;63:2232-2243.
Kullmann S, Kleinridders A, Small DM, et al. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol. 2020;8:524-534.
Kleinridders A. Deciphering brain insulin receptor and insulin-like growth factor 1 receptor signalling. J Neuroendocrinol. 2016;28(11).
Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:a009191.
Contreras L, Drago I, Zampese E, Pozzan T. Mitochondria: the calcium connection. Biochim Biophys Acta. 2010;1797:607-618.
Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009;43:95-118.
Ebert D, Haller RG, Walton ME. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23:5928-5935.
Timper K, Paeger L, Sánchez-Lasheras C, et al. Mild impairment of mitochondrial OXPHOS promotes fatty acid utilization in POMC neurons and improves glucose homeostasis in obesity. Cell Rep. 2018;25:383-397 e10.
Andersson U, Filipsson K, Abbott CR, et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem. 2004;279:12005-12008.
Wu S-B, Wu Y-T, Wu T-P, Wei Y-H. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta. 2014;1840:1331-1344.
Domise M, Sauvé F, Didier S, et al. Neuronal AMP-activated protein kinase hyper-activation induces synaptic loss by an autophagy-mediated process. Cell Death Dis. 2019;10:221.
Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004;428:569-574.
Yavari A, Stocker CJ, Ghaffari S, et al. Chronic activation of gamma2 AMPK induces obesity and reduces beta cell function. Cell Metab. 2016;23:821-836.
Valentine RJ, Coughlan KA, Ruderman NB, Saha AK. Insulin inhibits AMPK activity and phosphorylates AMPK Ser(4)(8)(5)/(4)(9)(1) through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys. 2014;562:62-69.
Aghanoori M-R, Smith DR, Shariati-Ievari S, et al. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes. Mol Metab. 2019;20:149-165.
Aghanoori M-R, Smith DR, Chowdhury SR, Sabbir MG, Calcutt NA, Fernyhough P. Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats. Exp Neurol. 2017;297:148-157.
Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications. Annu Rev Biochem. 2007;76:701-722.
Quiros PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol. 2016;17:213-226.
Wardelmann K, et al. Insulin action in the brain regulates mitochondrial stress responses and reduces diet-induced weight gain. Mol Metab. 2019;21:68-81.
Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93:884S-890S.
Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab. 2016;27:105-117.
Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 2001;114:867-874.
Kim SW, Lee JK. NO-induced downregulation of HSP10 and HSP60 expression in the postischemic brain. J Neurosci Res. 2007;85:1252-1259.
Frank M, et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta. 2012;1823:2297-2310.
Dietrich MO, Liu ZW, Horvath TL. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell. 2013;155:188-199.
Kitada T, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605-608.
Ye X, et al. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. Hum Mol Genet. 2015;24:2938-2951.
Misgeld T, Schwarz TL. Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron. 2017;96:651-666.
Kleinridders A, et al. Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. J Clin Invest. 2013;123:4667-4680.
Schneeberger M, et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell. 2013;155:172-187.
Ruegsegger GN, et al. Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight. 2019;4:e130681.
Schell M, et al. Interplay of dietary fatty acids and cholesterol impacts brain mitochondria and insulin action. Nutrients. 2020;12:1518.
He K, Aizenman E. ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced neurotoxicity. J Neurochem. 2010;114:452-461.
Yao J, et al. Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc Natl Acad Sci USA. 2009;106:14670-14675.
Talbot K, et al. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122:1316-1338.
Huang TJ, et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes. 2003;52:2129-2136.
Ribeiro M, et al. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med. 2014;74:129-144.
Pang Y, et al. IGF-1 protects oligodendrocyte progenitors against TNFalpha-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway. Glia. 2007;55:1099-1107.
Chong ZZ, Li F, Maiese K. Activating Akt and the brain's resources to drive cellular survival and prevent inflammatory injury. Histol Histopathol. 2005;20:299-315.
Bijur GN, Jope RS. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem. 2003;87:1427-1435.
Chen YH, et al. Mitochondrial Akt signaling modulated reprogramming of somatic cells. Sci Rep. 2019;9:9919.
Gazit N, et al. IGF-1 Receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses. Neuron. 2016;89:583-597.
Born J, et al. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5:514-516.
Schmid V, et al. Safety of intranasal human insulin: a review. Diabetes Obes Metab. 2018;20:1563-1577.
Jauch-Chara K, et al. Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans. Diabetes. 2012;61:2261-2268.
Hallschmid M, et al. Intranasal insulin reduces body fat in men but not in women. Diabetes. 2004;53:3024-3029.
Benedict C, et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology. 2004;29:1326-1334.
Zhang Y, et al. Intranasal insulin prevents anesthesia-induced spatial learning and memory deficit in mice. Sci Rep. 2016;6:21186.
Guo Z, et al. Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer's rat model. Sci Rep. 2017;7:45971.
Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342:619-630.
Ruegsegger GN, et al. Insulin deficiency and intranasal insulin alter brain mitochondrial function: a potential factor for dementia in diabetes. FASEB J. 2019;33:4458-4472.
Li H, et al. Intranasal administration of insulin reduces chronic behavioral abnormality and neuronal apoptosis induced by general anesthesia in neonatal mice. Front Neurosci. 2019;13:706.
Gabbouj S, et al. Intranasal insulin activates Akt2 signaling pathway in the hippocampus of wild-type but not in APP/PS1 Alzheimer model mice. Neurobiol Aging. 2019;75:98-108.
Konner AC, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5:438-449.
Klockener T, et al. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat Neurosci. 2011;14:911-918.
Correia SC, et al. Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer's disease. Curr Alzheimer Res. 2013;10:406-419.
Schwartz MW, et al. Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev. 1992;13:387-414.
Bruning JC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289:2122-2125.
Kleinridders A, et al. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci USA. 2015;112:3463-3468.
George C, et al. The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons. Brain. 2017;140:2012-2027.
Kappeler L, et al. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol. 2008;6:e254.
Gontier G, et al. Blocking IGF signaling in adult neurons alleviates Alzheimer's disease pathology through amyloid-beta clearance. J Neurosci. 2015;35:11500-11513.
Sadagurski M, et al. IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. J Clin Invest. 2011;121:4070-4081.
Chong AC, et al. Central insulin signaling modulates hypothalamus-pituitary-adrenal axis responsiveness. Mol Metab. 2015;4:83-92.
Shin AC, et al. Insulin receptor signaling in POMC, but Not AgRP, neurons controls adipose tissue insulin action. Diabetes. 2017;66:1560-1571.
Loh K, et al. Insulin controls food intake and energy balance via NPY neurons. Mol Metab. 2017;6:574-584.
Konner AC, et al. Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab. 2011;13:720-728.
Cai W, et al. Insulin regulates astrocyte gliotransmission and modulates behavior. J Clin Invest. 2018;128:2914-2926.
Garcia-Caceres C, et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell. 2016;166:867-880.
Logan S, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-beta uptake in astrocytes. Mol Metab. 2018;9:141-155.
Ratcliffe LE, et al. Loss of IGF1R in human astrocytes alters complex I activity and support for neurons. Neuroscience. 2018;390:46-59.
Woods SC, Porte D Jr. Relationship between plasma and cerebrospinal fluid insulin levels of dogs. Am J Physiol. 1977;233:E331-E334.
Heni M, et al. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans. Acta Diabetol. 2014;51:679-681.
Havrankova J, Roth J, Brownstein MJ. Concentrations of insulin and insulin receptors in the brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated rodents. J Clin Invest. 1979;64:636-642.
Kaiyala KJ, et al. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 2000;49:1525-1533.
Kern W, et al. Low cerebrospinal fluid insulin levels in obese humans. Diabetologia. 2006;49:2790-2792.
Glombik K, et al. Brain metabolic alterations in rats showing depression-like and obesity phenotypes. Neurotox Res. 2020;37:406-424.
Chowdhury SK, et al. Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes. 2010;59:1082-1091.
Sakamoto Y, Kuzuya T, Yoshida H. Insulin content and insulin receptors in the rat brain (author's transl). Horumon to Rinsho. 1981;29:1047-1051.
Santos RX, et al. Insulin therapy modulates mitochondrial dynamics and biogenesis, autophagy and tau protein phosphorylation in the brain of type 1 diabetic rats. Biochim Biophys Acta. 2014;1842:1154-1166.
Pharaoh G, et al. Disparate central and peripheral effects of circulating IGF-1 deficiency on tissue mitochondrial function. Mol Neurobiol. 2020;57:1317-1331.
Pintana H, et al. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci. 2012;91:409-414.
Pipatpiboon N, et al. PPARgamma agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology. 2012;153:329-338.
Sa-Nguanmoo P, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43-50.
Pintana H, et al. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol. 2013;218:1-11.
Pipatpiboon N, et al. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur J Neurosci. 2013;37:839-849.
Marques-Neto SR, et al. Effects of incretin-based therapies on neuro-cardiovascular dynamic changes induced by high fat diet in rats. PLoS One. 2016;11:e0148402.
Sa-Nguanmoo P, et al. FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats. Horm Behav. 2016;85:86-95.
Sarruf DA, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes. 2010;59:1817-1824.
Murphy CT, Hu PJ. Insulin/insulin-like growth factor signaling in C elegans. WormBook. 2013;1-43. https://doi.org/10.1895/wormbook.1.164.1.
Billing O, Kao G, Naredi X. Mitochondrial function is required for secretion of DAF-28/insulin in C elegans. PLoS One. 2011;6:e14507.
Halaschek-Wiener J, et al. Analysis of long-lived C elegans daf-2 mutants using serial analysis of gene expression. Genome Res. 2005;15:603-615.
Gami MS, Wolkow CA. Studies of Caenorhabditis elegans DAF-2/insulin signaling reveal targets for pharmacological manipulation of lifespan. Aging Cell. 2006;5:31-37.
Azpurua J, et al. IGF1R levels in the brain negatively correlate with longevity in 16 rodent species. Aging. 2013;5:304-314.
Holzenberger M, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421:182-187.
Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011;144:79-91.
Salway KD, et al. Higher levels of heat shock proteins in longer-lived mammals and birds. Mech Ageing Dev. 2011;132:287-297.
Gatsi R, et al. Prohibitin-mediated lifespan and mitochondrial stress implicate SGK-1, insulin/IGF and mTORC2 in C elegans. PLoS One. 2014;9:e107671.
Intine RV, Olsen AS, Sarras M Jr. A zebrafish model of diabetes mellitus and metabolic memory. J Vis Exp. 2013;72:e50232.
Moss JB, et al. Regeneration of the pancreas in adult zebrafish. Diabetes. 2009;58:1844-1851.
Meng XH, Chen B, Zhang J. Intracellular insulin and impaired autophagy in a zebrafish model and a cell model of type 2 diabetes. Int J Biol Sci. 2017;13:985-995.
Beshel J, Dubnau J, Zhong Y. A leptin analog locally produced in the brain acts via a conserved neural circuit to modulate obesity-linked behaviors in Drosophila. Cell Metab. 2017;25:208-217.
Brent AE, Rajan A. Insulin and leptin/Upd2 exert opposing influences on synapse number in fat-sensing neurons. Cell Metab. 2020;32:786-800.
Huang Y, et al. Insulin signaling in Drosophila melanogaster mediates Abeta toxicity. Commun Biol. 2019;2:13.
Smit AB, et al. Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide. Nature. 1988;331:535-538.
Kits KS, de Vries NJ, Ebberink RH. Molluscan insulin-related neuropeptide promotes neurite outgrowth in dissociated neuronal cell cultures. Neurosci Lett. 1990;109:253-258.
Murakami J, et al. Involvement of insulin-like peptide in long-term synaptic plasticity and long-term memory of the pond snail Lymnaea stagnalis. J Neurosci. 2013;33:371-383.
Bergmann F, Keller BU. Impact of mitochondrial inhibition on excitability and cytosolic Ca2+ levels in brainstem motoneurones from mouse. J Physiol. 2004;555:45-59.
Kreutzer C, et al. Hypothalamic inflammation in human obesity is mediated by environmental and genetic factors. Diabetes. 2017;66:2407-2415.
Yeo GS, et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998;20:111-112.
Timpson NJ, et al. The fat mass- and obesity-associated locus and dietary intake in children. Am J Clin Nutr. 2008;88:971-978.
Cecil JE, et al. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359:2558-2566.
Al-Serri A, Alroughani R, Al-Temaimi RA. The FTO gene polymorphism rs9939609 is associated with obesity and disability in multiple sclerosis patients. Sci Rep. 2019;9:19071.
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111-1119.
Little JP, et al. Mitochondrial transcription factor A (Tfam) is a pro-inflammatory extracellular signaling molecule recognized by brain microglia. Mol Cell Neurosci. 2014;60:88-96.
Alcantar-Fernandez J, et al. High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans. PLoS One. 2019;14:e0226652.
Peng Y, et al. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons. J Neurochem. 2016;137:701-713.
Rom S, et al. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol. 2019;56:1883-1896.
Mayer CM, Belsham DD. Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5' monophosphate-activated protein kinase activation. Endocrinology. 2010;151:576-585.
Thaler JP, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153-162.
Chambers JW, LoGrasso PV. Mitochondrial c-Jun N-terminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation. J Biol Chem. 2011;286:16052-16062.
Schriever S. Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. J Clin Invest. 2020;130:6093-6108.
Arnold SE, et al. High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice. Neurobiol Dis. 2014;67:79-87.
Sripetchwandee J, Chattipakorn N, Chattipakorn SC. Links between obesity-induced brain insulin resistance, brain mitochondrial dysfunction, and dementia. Front Endocrinol. 2018;9:496.
Cavaliere G, et al. High-fat diet induces neuroinflammation and mitochondrial impairment in mice cerebral cortex and synaptic fraction. Front Cell Neurosci. 2019;13:509.
Egea J, et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 2017;13:94-162.
Pinti MV, et al. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab. 2019;316:E268-E285.
Heni M, et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes. 2014;63:4083-4088.
Szego EM, et al. Cytosolic trapping of a mitochondrial heat shock protein is an early pathological event in synucleinopathies. Cell Rep. 2019;28:65-77 e6.
Castro JP, et al. Mitochondrial chaperones in the brain: safeguarding brain health and metabolism? Front Endocrinol. 2018;9:196.
Contributed Indexing:
Keywords: brain; energy homeostasis; inflammation; insulin signalling; metabolism; mitochondrial function
Substance Nomenclature:
0 (Insulin)
Entry Date(s):
Date Created: 20210128 Date Completed: 20211203 Latest Revision: 20211214
Update Code:
20240105
DOI:
10.1111/jne.12932
PMID:
33506556
Czasopismo naukowe
The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases.
(© 2021 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies