Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease.

Tytuł:
Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease.
Autorzy:
Li G; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
Eriani G; Architecture et Réactivité de l'ARN, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67084, Strasbourg, France.
Wang ED; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .
Zhou XL; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .
Źródło:
Science China. Life sciences [Sci China Life Sci] 2021 Oct; Vol. 64 (10), pp. 1645-1660. Date of Electronic Publication: 2021 Jan 28.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Beijing : Science China Press, co-published with Springer
MeSH Terms:
Arginine-tRNA Ligase/*genetics
Hereditary Central Nervous System Demyelinating Diseases/*genetics
5' Untranslated Regions ; Arginine-tRNA Ligase/chemistry ; Arginine-tRNA Ligase/metabolism ; Humans ; Mutation ; Open Reading Frames ; Protein Biosynthesis ; Protein Conformation ; Protein Domains ; Protein Stability
References:
Anderson, D.M., Anderson, K.M., Chang, C.L., Makarewich, C.A., Nelson, B.R., McAnally, J.R., Kasaragod, P., Shelton, J.M., Liou, J., Bassel-Duby, R., et al. (2015). A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606. (PMID: 4356254435625410.1016/j.cell.2015.01.009)
Bonnefond, L., Fender, A., Rudinger-Thirion, J., Giegé, R., Florentz, C., and Sissler, M. (2005). Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS. Biochemistry 44, 4805–4816. (PMID: 1577990710.1021/bi047527z15779907)
Boeck, R., and Kolakofsky, D. (1994). Positions +5 and +6 can be major determinants of the efficiency of non-AUG initiation codons for protein synthesis. EMBO J 13, 3608–3617. (PMID: 806283539526610.1002/j.1460-2075.1994.tb06668.x)
Brender, T., Wallerstein, D., Sum, J., and Wallerstein, R. (2015). Unusual presentation of Pelizaeus-Merzbacher disease: female patient with deletion of the proteolipid protein 1 gene. Case Rep Genets 2015, 1–3. (PMID: 10.1155/2015/453105)
Cavarelli, J., Delagoutte, B., Eriani, G., Gangloff, J., and Moras, D. (1998). L-Arginine recognition by yeast arginyl-tRNA synthetase. EMBO J 17, 5438–5448. (PMID: 9736621117086910.1093/emboj/17.18.5438)
Chang, C.T., Wu, C.S., and Yang, J.T. (1978). Circular dichroic analysis of protein conformation: inclusion of the β-turns. Anal Biochem 91, 13–31. (PMID: 976208010.1016/0003-2697(78)90812-69762080)
Chen, Y., Ruan, Z.R., Wang, Y., Huang, Q., Xue, M.Q., Zhou, X.L., and Wang, E.D. (2018). A threonyl-tRNA synthetase-like protein has tRNA aminoacylation and editing activities. Nucleic Acids Res 46, 3643–3656. (PMID: 29579307590946010.1093/nar/gky211)
Delagoutte, B., Moras, D., and Cavarelli, J. (2000). tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding. EMBO J 19, 5599–5610. (PMID: 1106001230578910.1093/emboj/19.21.5599)
Edvardson, S., Shaag, A., Kolesnikova, O., Gomori, J.M., Tarassov, I., Einbinder, T., Saada, A., and Elpeleg, O. (2007). Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81, 857–862. (PMID: 17847012222793610.1086/521227)
Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. (1990). Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206. (PMID: 220397110.1038/347203a02203971)
Fang, Z.P., Wang, M., Ruan, Z.R., Tan, M., Liu, R.J., Zhou, M., Zhou, X.L., and Wang, E.D. (2014). Coexistence of bacterial leucyl-tRNA synthetases with archaeal tRNA binding domains that distinguish tRNA . Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31, 226–232.
Xu, W.L., Deng, B., Lin, P.H., Liu, C., Li, B., Huang, Q.J., Zhou, H., Yang, J.H., and Qu, L.H. (2020). Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci China Life Sci 63, 529–542. (PMID: 3124052110.1007/s11427-019-9580-531240521)
Xue, Y.C., Chen, R.S., Qu, L.H., and Cao, X.F. (2020). Noncoding RNA: from dark matter to bright star. Sci China Life Sci 63, 463–468. (PMID: 3218924010.1007/s11427-020-1676-532189240)
Yang, F., Xia, X., Lei, H.Y., and Wang, E.D. (2010). Hemin binds to human cytoplasmic arginyl-tRNA synthetase and inhibits its catalytic activity. J Biol Chem 285, 39437–39446. (PMID: 20923763299812210.1074/jbc.M110.159913)
Young, S.K., and Wek, R.C. (2016). Upstream open reading frames differentially regulate gene-specific translation in the integrated stress response. J Biol Chem 291, 16927–16935. (PMID: 27358398501609910.1074/jbc.R116.733899)
Zheng, Y.G., Wei, H., Ling, C., Xu, M.G., and Wang, E.D. (2006). Two forms of human cytoplasmic arginyl-tRNA synthetase produced from two translation initiations by a single mRNA. Biochemistry 45, 1338–1344. (PMID: 1643023110.1021/bi051675n16430231)
Zhou, X.L., Chen, Y., Zeng, Q.Y., Ruan, Z.R., Fang, P.F., and Wang, E.D. (2019). Newly acquired N-terminal extension targets threonyl-tRNA synthetase-like protein into the multiple tRNA synthetase complex. Nucleic Acids Res 47, 8662–8674. (PMID: 31287872679437710.1093/nar/gkz588)
Zhou, X.L., He, L.X., Yu, L.J., Wang, Y., Wang, X.J., Wang, E.D., and Yang, T. (2017). Mutations in KARS cause early-onset hearing loss and leukoencephalopathy: potential pathogenic mechanism. Hum Mutat 38, 1740–1750. (PMID: 2888784610.1002/humu.2333528887846)
Zhou, X.L., Ruan, Z.R., Huang, Q., Tan, M., and Wang, E.D. (2013). Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote. Nucleic Acids Res 41, 302–314. (PMID: 2309360610.1093/nar/gks98223093606)
Zhou, X.L., and Wang, E.D. (2013). Transfer RNA: a dancer between charging and mis-charging for protein biosynthesis. Sci China Life Sci 56, 921–932. (PMID: 2398286410.1007/s11427-013-4542-923982864)
Zhou, X.L., Zhu, B., and Wang, E.D. (2008). The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing. J Biol Chem 283, 36608–36616. (PMID: 18955487266231210.1074/jbc.M806745200)
Contributed Indexing:
Keywords: aminoacyl-tRNA synthetase (aaRS); central nervous system (CNS); protein biosynthesis; tRNA; translation initiation
Substance Nomenclature:
0 (5' Untranslated Regions)
EC 6.1.1.19 (Arginine-tRNA Ligase)
SCR Disease Name:
Leukodystrophy, Hypomyelinating, 2
Entry Date(s):
Date Created: 20210130 Date Completed: 20220308 Latest Revision: 20220308
Update Code:
20240104
DOI:
10.1007/s11427-020-1838-2
PMID:
33515434
Czasopismo naukowe
Mutations of the genes encoding aminoacyl-tRNA synthetases are highly associated with various central nervous system disorders. Recurrent mutations, including c.5A>G, p.D2G; c.1367C>T, p.S456L; c.1535G>A, p.R512Q and c.1846_1847del, p. Y616Lfs*6 of RARS1 gene, which encodes two forms of human cytoplasmic arginyl-tRNA synthetase (hArgRS), are linked to Pelizaeus-Merzbacher-like disease (PMLD) with unclear pathogenesis. Among these mutations, c.5A>G is the most extensively reported mutation, leading to a p.D2G mutation in the N-terminal extension of the long-form hArgRS. Here, we showed the detrimental effects of R512Q substitution and ΔC mutations on the structure and function of hArgRS, while the most frequent mutation c.5A>G, p.D2G acted in a different manner without impairing hArgRS activity. The nucleotide substitution c.5A>G reduced translation of hArgRS mRNA, and an upstream open reading frame contributed to the suppressed translation of the downstream main ORF. Taken together, our results elucidated distinct pathogenic mechanisms of various RARS1 mutations in PMLD.
(© 2021. Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies