Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Forecasting System of Computational Time of DFT/TDDFT Calculations under the Multiverse Ansatz via Machine Learning and Cheminformatics.

Tytuł:
Forecasting System of Computational Time of DFT/TDDFT Calculations under the Multiverse Ansatz via Machine Learning and Cheminformatics.
Autorzy:
Ma S; Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China.; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
Ma Y; Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China.; Center of Scientific Computing Applications & Research, Chinese Academy of Sciences, Beijing 100190, China.
Zhang B; Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China.; Center of Scientific Computing Applications & Research, Chinese Academy of Sciences, Beijing 100190, China.
Tian Y; Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China.; School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
Jin Z; Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China.; Center of Scientific Computing Applications & Research, Chinese Academy of Sciences, Beijing 100190, China.
Źródło:
ACS omega [ACS Omega] 2021 Jan 14; Vol. 6 (3), pp. 2001-2024. Date of Electronic Publication: 2021 Jan 14 (Print Publication: 2021).
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Washington, D.C. : American Chemical Society, [2016]-
References:
J Comput Chem. 2018 Sep 5;39(23):1931-1942. (PMID: 30247770)
Phys Chem Chem Phys. 2008 Nov 28;10(44):6615-20. (PMID: 18989472)
Acc Chem Res. 2015 Mar 17;48(3):722-30. (PMID: 25687211)
J Chem Inf Model. 2019 Nov 25;59(11):4814-4820. (PMID: 31600445)
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6648-53. (PMID: 15870212)
Neural Comput. 1997 Nov 15;9(8):1735-80. (PMID: 9377276)
J Chem Phys. 2020 May 14;152(18):184102. (PMID: 32414274)
Chem Rev. 2019 Jul 24;119(14):8781-8845. (PMID: 31251603)
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72. (PMID: 16381955)
Chem Rev. 2012 Jan 11;112(1):289-320. (PMID: 22191548)
Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100. (PMID: 9900728)
Neural Comput. 2000 Oct;12(10):2451-71. (PMID: 11032042)
J Phys Chem A. 2013 May 2;117(17):3655-65. (PMID: 23594174)
Nature. 2017 Sep 13;549(7671):195-202. (PMID: 28905917)
Chem Rev. 2012 Jan 11;112(1):632-72. (PMID: 21866983)
J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
J Chem Inf Model. 2018 Sep 24;58(9):1731-1735. (PMID: 30114367)
Chem Rev. 2012 Jan 11;112(1):108-81. (PMID: 22204633)
Phys Rev Lett. 2013 Jun 28;110(26):260407. (PMID: 23848853)
Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789. (PMID: 9944570)
Nucleic Acids Res. 2014 Jan;42(Database issue):D1091-7. (PMID: 24203711)
Bioinformatics. 2014 May 1;30(9):1312-3. (PMID: 24451623)
J Phys Chem B. 2020 Apr 16;124(15):3027-3035. (PMID: 32208716)
J Chem Theory Comput. 2019 Nov 12;15(11):5925-5964. (PMID: 31509407)
J Comput Chem. 2003 Mar;24(4):484-95. (PMID: 12594791)
J Chem Phys. 2012 Jan 14;136(2):024113. (PMID: 22260570)
J Comb Chem. 2001 Mar-Apr;3(2):157-66. (PMID: 11300855)
Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6. (PMID: 18048412)
Proc Math Phys Eng Sci. 2018 Jan;474(2209):20170551. (PMID: 29434508)
J Chem Phys. 2006 May 14;124(18):184703. (PMID: 16709127)
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. (PMID: 10062328)
Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3698-703. (PMID: 11607654)
J Chem Phys. 2020 Apr 21;152(15):154102. (PMID: 32321259)
J Chem Phys. 2005 Aug 8;123(6):62201. (PMID: 16122287)
Neural Netw. 2001 May;14(4-5):439-58. (PMID: 11411631)
Curr Opin Chem Biol. 2002 Jun;6(3):384-9. (PMID: 12023120)
Entry Date(s):
Date Created: 20210201 Latest Revision: 20210202
Update Code:
20240104
PubMed Central ID:
PMC7841786
DOI:
10.1021/acsomega.0c04981
PMID:
33521440
Czasopismo naukowe
With the view of achieving a better performance in task assignment and load-balancing, a top-level designed forecasting system for predicting computational times of density-functional theory (DFT)/time-dependent DFT (TDDFT) calculations is presented. The computational time is assumed as the intrinsic property for the molecule. Based on this assumption, the forecasting system is established using the "reinforced concrete", which combines the cheminformatics, several machine-learning (ML) models, and the framework of many-world interpretation (MWI) in multiverse ansatz. Herein, the cheminformatics is used to recognize the topological structure of molecules, the ML models are used to build the relationships between topology and computational cost, and the MWI framework is used to hold various combinations of DFT functionals and basis sets in DFT/TDDFT calculations. Calculated results of molecules from the DrugBank dataset show that (1) it can give quantitative predictions of computational costs, typical mean relative errors can be less than 0.2 for DFT/TDDFT calculations with derivations of ±25% using the exactly pretrained ML models and (2) it can also be employed to various combinations of DFT functional and basis set cases without exactly pretrained ML models, while only slightly enlarge predicting errors.
Competing Interests: The authors declare no competing financial interest.
(© 2021 The Authors. Published by American Chemical Society.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies