Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Coupled whole-tree optimality and xylem hydraulics explain dynamic biomass partitioning.

Tytuł:
Coupled whole-tree optimality and xylem hydraulics explain dynamic biomass partitioning.
Autorzy:
Potkay A; Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA.
Trugman AT; Department of Geography, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
Wang Y; School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
Venturas MD; School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
Anderegg WRL; School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
Mattos CRC; Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA.
Fan Y; Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, 08854, USA.
Źródło:
The New phytologist [New Phytol] 2021 Jun; Vol. 230 (6), pp. 2226-2245. Date of Electronic Publication: 2021 Mar 27.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Trees*
Xylem*
Biomass ; Photosynthesis ; Plant Leaves ; Water
References:
Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods. Oecologia 66: 317-321.
Alder NN, Sperry JS, Pockman WT. 1996. Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia 105: 293-301.
Anten NP, During HJ. 2011. Is analysing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion? Oecologia 167: 293-303.
Arora VK, Boer GJ. 2005. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology 11: 39-59.
Ballantyne AP, Andres R, Houghton R, Stocker BD, Wanninkhof R, Anderegg W, Cooper LA, DeGrandpre M, Tans PP, Miller JB et al. 2015. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty. Biogeosciences 12: 2565-2584.
Barde-Cabusson S, Bolós X, Pedrazzi D, Lovera R, Serra G, Martí J, Casas A. 2013. Electrical resistivity tomography revealing the internal structure of monogenetic volcanoes. Geophysical Research Letters 40: 2544-2549.
Barigah TS, Bonhomme M, Lopez D, Traore A, Douris M, Venisse J-S, Cochard H, Badel E. 2013. Modulation of bud survival in Populus nigra sprouts in response to water stress-induced embolism. Tree Physiology 33: 261-274.
Bear J. 2007. Hydraulics of groundwater. Mineola, NY, USA: Dover Publications.
Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB et al. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329: 834-838.
Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24: 43-69.
Bloom AJ, Chapin FS III, Mooney HA. 1985. Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics 16: 363-392.
Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 1444-1449.
Bonan G. 2015. Ecological climatology: concepts and applications. Cambridge, UK: Cambridge University Press.
Brouwer R. 1962. Nutritive influences on the distribution of dry matter in the plant. Netherlands Journal of Agricultural Sciences 10: 361-376.
Brouwer R. 1963. Some aspects of the equilibrium between overground and underground plant parts. Jaarboek van het Instituut voor Biologisch en Scheikundig onderzoek aan Landbouwgewassen 1963: 31-39.
Buckley TN, Miller JM, Farquhar GD. 2002. The mathematics of linked optimisation for water and nitrogen use in a canopy. Silva Fennica 36: 639-669.
Buckley TN, Roberts DW. 2006a. DESPOT, a process-based tree growth model that allocates carbon to maximize carbon gain. Tree Physiology 26: 129-144.
Buckley TN, Roberts DW. 2006b. How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth? Tree Physiology 26: 145-157.
Buckley TN, Sack L, Farquhar GD. 2017. Optimal plant water economy. Plant, Cell & Environment 40: 881-896.
Caldararu S, Palmer PI, Purves DW. 2012. Inferring Amazon leaf demography from satellite observations of leaf area index. Biogeosciences 9: 1389-1404.
Caldararu S, Purves DW, Palmer PI. 2014. Phenology as a strategy for carbon optimality: a global model. Biogeosciences 11: 763-778.
Caldararu S, Thum T, Yu L, Zaehle S. 2020. Whole-plant optimality predicts changes in leaf nitrogen under variable CO2 and nutrient availability. New Phytologist 225: 2331-2346.
Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583-595.
Carter JL, White DA. 2009. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiology 29: 1407-1418.
Chen X, Eamus D, Hutley LB. 2004. Seasonal patterns of fine-root productivity and turnover in a tropical savanna of northern Australia. Journal of Tropical Ecology 20: 221-224.
Christina M, Nouvellon Y, Laclau J-P, Stape JL, Bouillet J-P, Lambais GR, Lambais GR, Maire G. 2017. Importance of deep water uptake in tropical eucalypt forest. Functional Ecology 31: 509-519.
Christoffersen BO, Gloor M, Fauset S, Fyllas NM, Galbraith DR, Baker TR, Kruijt B, Rowland L, Fisher RA, Binks OJ et al. 2016. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geoscientific Model Development 9: 4227-4255.
Chung HH, Barnes RL. 1977. Photosynthate allocation in Pinus taeda taeda. I. Substrate requirements for synthesis of shoot biomass. Canadian Journal of Forest Research 7: 106-111.
Clark MP, Fan Y, Lawrence DM, Adam JC, Bolster D, Gochis DJ, Hooper RP, Kumar M, Leung LR, Mackay DS. 2015. Improving the representation of hydrologic processes in earth system models. Water Resources Research 51: 5929-5956.
Collins DBG, Bras RL. 2007. Plant rooting strategies in water-limited ecosystems. Water Resources Research 43: W06407.
Davidson RL. 1969. Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Annals of Botany 33: 561-569.
Dawson TE, Hahm WJ, Crutchfield-Peters K. 2020. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytologist 226: 666-671.
De Kauwe Martin G, Medlyn BE, Zaehle S, Walker Anthony P, Dietze Michael C, Wang Y-P, Luo Y, Jain Atul K, El-Masri B, Hickler Tet al. 2014. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytologist 203: 883-899.
Delucia EH, Maherali H, Carey EV. 2000. Climate-driven changes in biomass allocation in pines. Global Change Biology 6: 587-593.
Dewar RC, Franklin O, Mäkelä A, McMurtrie RE, Valentine HT. 2009. Optimal function explains forest responses to global change. BioScience 59: 127-139.
Domec JC, Palmroth S, Ward E, Maier CA, Therezien M, Oren R. 2009. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. Plant, Cell & Environment 32: 1500-1512.
Drewniak B, Gonzalez-Meler MA. 2017. Earth system model needs for including the interactive representation of nitrogen deposition and drought effects on forested ecosystems. Forests 8: 267.
Dybzinski R, Farrior C, Wolf A, Reich PB, Pacala SW. 2011. Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. American Naturalist 177: 153-166.
Dybzinski R, Farrior CE, Pacala SW. 2015. Increased forest carbon storage with increased atmospheric CO2 despite nitrogen limitation: A game-theoretic allocation model for trees in competition for nitrogen and light. Global Change Biology 21: 1182-1196.
Eller CB, Rowland L, Mencuccini M, Rosas T, Williams K, Harper A, Medlyn BE, Wagner Y, Klein T, Teodoro GS et al. 2020. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist 226: 1622-1637.
Evans JR. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19.
Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J. 2017. Drought effect on plant biomass allocation: A meta-analysis. Ecology and Evolution 7: 11002-11010.
Fan Y, Clark M, Lawrence DM, Swenson S, Band LE, Brantley SL, Brooks PD, Dietrich WE, Flores A, Grant G et al. 2019. Hillslope hydrology in global change research and earth system modeling. Water Resources Research 55: 1737-1772.
Fan Y, Li H, Miguez-Macho G. 2013. Global patterns of groundwater table depth. Science 339: 940-943.
Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero-Casal C. 2017. Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences, USA 114: 10572-10577.
Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90.
Farrior CE, Dybzinski R, Levin SA, Pacala SW. 2013. Competition for water and light in closed-canopy forests: a tractable model of carbon allocation with implications for carbon sinks. American Naturalist 181: 314-330.
Fatichi S, Leuzinger S, Körner C. 2014. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytologist 201: 1086-1095.
Field CH, Mooney HA. 1986. Photosynthesis-nitrogen relationship in wild plants. In: On the economy of plant form and function: proceedings of the Sixth Maria Moors Cabot symposium, evolutionary constraints on primary productivity, adaptive patterns of energy capture in plants, Harvard Forest, August 1983. Cambridge, UK: Cambridge University Press, 1986.
Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME et al. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences, USA 104: 14014-14019.
Franklin O. 2007. Optimal nitrogen allocation controls tree responses to elevated CO2. New Phytologist 174: 811-822.
Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, Pietsch S, Falster D, Cramer W, Loreau M et al. 2020. Organizing principles for vegetation dynamics. Nature Plants 6: 444-453.
Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström Å, Dybzinski R. 2012. Modeling carbon allocation in trees: a search for principles. Tree Physiology 32: 648-666.
Franklin O, McMurtrie RE, Iversen CM, Crous KY, Finzi AC, Tissue DT, Ellsworth DS, Oren R, Norby RJ. 2009. Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Global Change Biology 15: 132-144.
van Genuchten MT. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Science Society of America journal 44: 892-898.
Givnish TJ. 1986. Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. In: Givnish TJ, ed. On the economy of plant form and function: proceedings of the Sixth Maria Moors Cabot symposium, evolutionary constraints on primary productivity, adaptive patterns of energy capture in plants, Harvard Forest, August 1983. Cambridge, UK: Cambridge University Press, 171-213.
Gower ST, Vogt KA, Grier CC. 1992. Carbon dynamics of rocky mountain Douglas-fir: influence of water and nutrient availability. Ecological Monographs 62: 43-65.
Guswa AJ. 2008. The influence of climate on root depth: a carbon cost-benefit analysis. Water Resources Research 44: W02427.
Hari P, Mäkelä A, Korpilahti E, Holmberg M. 1986. Optimal control of gas exchange. Tree Physiology 2: 169-175.
Hartmann H. 2015. Carbon starvation during drought-induced tree mortality - are we chasing a myth? Journal of Plant Hydraulics 2: e005.
Hayat A, Hacket-Pain AJ, Pretzsch H, Rademacher TT, Friend AD. 2017. Modeling tree growth taking into account carbon source and sink limitations. Frontiers in Plant Science 8: 182.
Helmisaari HS, Siltala T. 1989. Variation in nutrient concentrations of Pinus sylvestris stems. Scandinavian Journal of Forest Research 4: 443-451.
Högberg P, Nordgren A, Ågren GI. 2002. Carbon allocation between tree root growth and root respiration in boreal pine forest. Oecologia 132: 579-581.
Hölttä T, Kurppa M, Nikinmaa E. 2013. Scaling of xylem and phloem transport capacity and resource usage with tree size. Frontiers in Plant Science 4: 496.
Hu M, Lehtonen A, Minunno F, Mäkelä A. 2020. Age effect on tree structure and biomass allocation in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.). Annals of Forest Science 77: 1-15.
Imada S, Yamanaka N, Tamai S. 2008. Water table depth affects Populus alba fine root growth and whole plant biomass. Functional Ecology 22: 1018-1026.
Irvine J, Grace J. 1997. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 202: 455-461.
Ivanov VY, Bras RL, Vivoni ER. 2008. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resources Research 44.
Iversen CM. 2010. Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytologist 186: 346-357.
Jackson RB, Cook CW, Pippen JS, Palmer SM. 2009. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 90: 3352-3366.
Janssens IA, Sampson DA, Cermak J, Meiresonne L, Riguzzi F, Overloop S, Ceulemans R. 1999. Above-and belowground phytomass and carbon storage in a Belgian Scots pine stand. Annals of Forest Science 56: 81-90.
Jiménez E, Moreno F, Peñuel M, Patino S, Lloyd J. 2009. Fine root dynamics for forests on contrasting soils in the Colombian Amazon. Biogeosciences 6: 2809-2827.
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77: 437-472.
Katul G, Manzoni S, Palmroth S, Oren R. 2010. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany 105: 431-442.
King DA. 1990. The adaptive significance of tree height. American Naturalist 135: 809-828.
Kleidon A, Heimann M. 1996. Simulating root carbon storage with a coupled carbon-Water cycle root model. Physics and Chemistry of the Earth 21: 499-502.
Kolari P, Chan T, Porcar-Castell A, Bäck J, Nikinmaa E, Juurola E. 2014. Field and controlled environment measurements show strong seasonal acclimation in photosynthesis and respiration potential in boreal Scots pine. Frontiers in Plant Science 5: 717.
Laio F, D'Odorico P, Ridolfi L. 2006. An analytical model to relate the vertical root distribution to climate and soil properties. Geophysical Research Letters 33: L18401.
Lampurlanés J, Cantero-Martínez C. 2006. Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions. Soil and Tillage Research 85: 13-26.
Landsberg JJ, Blanchard TW, Warrit B. 1976. Studies on movement of water through apple-trees. Journal of Experimental Botany 27: 579-596.
Lawrence DM, Fisher RA, Koven CD, Oleson KW, Swenson SC, Bonan G, Collier N, Ghimire B, Kampenhout L, Kennedy D et al. 2019. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems 11: 4245-4287.
Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG et al. 2018. Global carbon budget 2018. Earth System Science Data 10: 2141-2194.
Ledo A, Paul KI, Burslem DF, Ewel JJ, Barton C, Battaglia M, Brooksbank K, Carter J, Eid TH, England JR et al. 2018. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytologist 217: 8-11.
Litton CM. 2002. Above- and belowground carbon allocation in post-fire lodgepole pine forests: effects of tree density and stand age. Laramie, WY, USA: Department of Botany, University of Wyoming, 210.
Litton CM, Raich JW, Ryan MG. 2007. Carbon allocation in forest ecosystems. Global Change Biology 13: 2089-2109.
Love DM, Venturas MD, Sperry JS, Brooks PD, Pettit JL, Wang Y, Anderegg WRL, Tai X, Mackay DS. 2019. Dependence of aspen stands on a subsurface water subsidy: implications for climate change impacts. Water Resources Research 55: 1833-2184.
Mackay DS, Savoy PR, Grossiord C, Tai X, Pleban JR, Wang DR, McDowell NG, Adams HD, Sperry JS. 2020. Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics. New Phytologist 225: 679-692.
Magnani F, Mencuccini M, Grace J. 2000. Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant, Cell & Environment 23: 251-263.
Mäkelä A, Berninger F, Hari P. 1996. Optimal control of gas exchange during drought: theoretical analysis. Annals of Botany 77: 461-468.
Mäkelä A, Givnish TJ, Berninger F, Buckley TN, Farquhar GD, Hari P. 2002. Challenges and opportunities of the optimality approach in plant ecology. Silva Fennica 36: 605-614.
Mäkelä A, Sievanen RP. 1987. Comparison of two shoot-root partitioning models with respect to substrate utilization and functional balance. Annals of Botany 59: 129-140.
Mäkelä A, Valentine HT, Helmisaari HS. 2008. Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytologist 180: 114-123.
Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A. 2011. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Functional Ecology 25: 456-467.
Martínez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R et al. 2009. Hydraulic adjustment of Scots pine across Europe. New Phytologist 184: 353-364.
Martínez-Vilalta J, Korakaki E, Vanderklein D, Mencuccini M. 2007. Below-ground hydraulic conductance is a function of environmental conditions and tree size in Scots pine. Functional Ecology 21: 1072-1083.
McLaughlin BC, Ackerly DD, Klos PZ, Natali J, Dawson TE, Thompson SE. 2017. Hydrologic refugia, plants, and climate change. Global Change Biology 23: 2941-2961.
McLaughlin BC, Blakey R, Weitz AP, Feng X, Brown BJ, Ackerly DD, Dawson TE, Thompson SE. 2020. Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Global Change Biology 26: 3091-3107.
McMahon TA. 1973. Size and shape in biology. Science 179: 1201-1204.
McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CV. 2008. Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Functional Plant Biology 35: 521-534.
Meir P, Kruijt B, Broadmeadow M, Barbosa E, Kull O, Carswell F, Nobre A, Jarvis PG. 2002. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell & Environment 25: 343-357.
Mencuccini M, Grace J. 1994. Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiology 15: 1-10.
Mencuccini M, Grace J. 1996. Hydraulic conductance, light interception and needle nutrient concentration in Scots pine stands and their relations with net primary productivity. Tree Physiology 16: 459-468.
Mencuccini M, Martínez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B. 2005. Size-mediated ageing reduces vigour in trees. Ecology letters 8: 1183-1190.
Merganičová K, Merganič J, Lehtonen A, Vacchiano G, Sever MZO, Augustynczik AL, Grote R, Kyselová I, Mäkelä A, Yousefpour R et al. 2019. Forest carbon allocation modelling under climate change. Tree Physiology 39: 1937-1960.
Morison JIL. 1987. Intercellular CO2 concentration and stomatal response to CO2. In: Zeiger E, Cowan IR, Farquhar GD, eds. Stomatal function. Stanford, CA, USA: Stanford University Press, 229-251.
Naumburg E, Mata-Gonzalez R, Hunter RG, McLendon T, Martin DW. 2005. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation. Environmental Management 35: 726-740.
Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T. 2013. Assimilate transport in phloem sets conditions for leaf gas exchange. Plant, Cell & Environment 36: 655-669.
Niklas KJ, Spatz HC. 2004. Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences, USA 101: 15661-15663.
Norby RJ, Wullschleger SD, Hanson PJ, Gunderson CA, Tschaplinski TJ, Jastrow JD. 2006. CO2 enrichment of a deciduous forest: the Oak Ridge FACE experiment. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H, eds. Managed Ecosystems and CO2. Berlin/Heidelberg, Germany: Springer, 231-251.
Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN. 2016b. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change 6: 1023-1027.
Novick KA, Miniat CF, Vose JM. 2016a. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory. Plant, Cell & Environment 39: 583-596.
Oleksyn J, Reich PB, Chalupka W, Tjoelker MG. 1999. Differential above-and below-ground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scandinavian Journal of Forest Research 14: 7-17.
Oleson KW, Lawrence DM, Gordon B, Flanner MG, Kluzek E, Peter J, Heald CL. 2010. Technical description of version 4.0 of the Community Land Model (CLM). Note. NCAR/TN-4781STR. Boulder, CO, USA: NCAR Technical Note.
Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Swenson SC. 2013. Technical description of version 4.5 of the community land model (CLM), Note. NCAR/TN-503+ STR. Boulder, CO, USA: NCAR Technical Note.
Onoda Y, Saluñga JB, Akutsu K, Aiba SI, Yahara T, Anten NP. 2014. Trade-off between light interception efficiency and light use efficiency: implications for species coexistence in one-sided light competition. Journal of Ecology 102: 167-175.
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG et al. 2011. A large and persistent carbon sink in the World’s forests. Science 333: 988-993.
Penman HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences 193, 1032, 120-145.
Persson H. 1980. Fine root dynamics in a Scots pine stand with and without near optimum nutrient and water regimes. Acta Phytogeographica Suecica 68: 101-110.
Poorter H, Jagodzinski AM, Ruiz-Peinado R, Kuyah S, Luo Y, Oleksyn J, Usoltsev VA, Buckley TN, Reich PB, Sack L. 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist 208: 736-749.
Poorter H, Nagel O. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Functional Plant Biology 27: 1191.
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193: 30-50.
Poyatos R, Aguadé D, Galiano L, Mencuccini M, Martínez-Vilalta J. 2013. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytologist 200: 388-401.
Poyatos R, Aguadé D, Martínez-Vilalta J. 2018. Below-ground hydraulic constraints during drought-induced decline in Scots pine. Annals of Forest Science 75: 100.
Poyatos R, Martínez-Vilalta J, Čermák J, Ceulemans R, Granier A, Irvine J, Köstner B, Lagergren F, Meiresonne L, Nadezhdina N, Zimmermann R, Llorens P, Mencuccini M. 2007. Plasticity in hydraulic architecture of Scots pine across Eurasia. Oecologia 153: 245-259.
Pretzsch H. 2014. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Forest Ecology and Management 327: 251-264.
Pritchard SG, Strand AE, McCORMACK ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R. 2008. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2 -enrichment: a six-year-minirhizotron study. Global Change Biology 14: 588-602.
Reid CPP, Odegard GJ, Hokenstrom JC, McConnell WJ, Frayer WE. 1974. Effects of clearcutting on nutrient cycling in lodgepole pine forests. Fort Collins, CO, USA: Colorado State University and United States Forest Service, 321.
Reyer CPO, Silveyra Gonzalez R, Dolos K, Hartig F, Hauf Y, Noack M, Lasch-Born P, Rötzer T, Pretzsch H, Meesenburg H et al. 2020. The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data 12: 1295-1320.
Reynolds JF, Thornley JHM. 1982. A shoot:root partitioning model. Annals of Botany 49: 585-597.
Richards LA. 1931. Capillary conduction of liquids through porous medium. Physics 1: 318-333.
Richardson LF. 1922. Weather prediction by numerical process. Cambridge, UK: University Press, 262.
Roberts J. 1977. Use of tree-cutting techniques in study of water relations of mature Pinus sylvestris L.1. Technique and survey of results. Journal of Experimental Botany 28: 751-767.
Roebroek CT, Melsen LA, Hoek van Dijke AJ, Fan Y, Teuling AJ. 2020. Global distribution of hydrologic controls on forest growth. Hydrology and Earth System Sciences 24: 4625-4639.
Rosas T, Mencuccini M, Barba J, Cochard H, Saura-Mas S, Martínez-Vilalta J. 2019. Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist 223: 632-646.
Running SW. 1980. Field estimates of root and xylem resistances in Pinus contorta using root excision. Journal of Experimental Botany 31: 555-569.
Ryan MG. 1989. Sapwood volume for three subalpine conifers: predictive equations and ecological implications. Canadian Journal of Forest Research 19: 1397-1401.
Sabine CL, Heimann M, Artaxo P, Bakker DC, Chen CTA, Field CB, Gruber, N, Le Quere, C, Prinn, RG, Richey, JE, Lankao, PR, Sathaye, JA & Vallentini, R. 2004. Current status and past trends of the global carbon cycle. Scope-scientific Committee on Problems of the Environment International Council of Scientific Unions 62: 17-44.
Sabot ME, De Kauwe MG, Pitman AJ, Medlyn BE, Verhoef A, Ukkola AM, Abramowitz G. 2020. Plant profit maximization improves predictions of European forest responses to drought. New Phytologist 226: 1638-1655.
Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD, Reich PB, Von Allmen EI. 2010. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proceedings of the National Academy of Sciences, USA 107: 22722-22727.
Schenk HJ. 2008. The shallowest possible water extraction profile: a null model for global root distributions. Vadose Zone Journal 7: 1119-1124.
Schenk HJ, Jackson RB. 2002. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology 480-494.
Schenk HJ, Jackson RB. 2005. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126: 129-140.
Schiestl-Aalto P, Kulmala L, Mäkinen H, Nikinmaa E, Mäkelä A. 2015. CASSIA-a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine. New Phytologist 206: 647-659.
Schimel D, Stephens BB, Fisher JB. 2015. Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences, USA 112: 436-441.
Schwinning S, Ehleringer JR. 2001. Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. Journal of Ecology 89: 464-480.
Schymanski SJ, Sivapalan M, Roderick ML, Beringer J, Hutley LB. 2008. An optimality-based model of the coupled soil moisture and root dynamics. Hydrology and Earth System Sciences 12: 913-932.
Schymanski SJ, Sivapalan M, Roderick ML, Hutley LB, Beringer J. 2009. An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resources Research 45: WO1412.
Sendròs A, Diaz Y, Himi M, Tapias JC, Rivero L, Font X, Casas A. 2014. An evaluation of aquifer vulnerability in two nitrate sensitive areas of Catalonia (NE Spain) based on electrical resistivity methods. Environmental Earth Sciences 71: 77-84.
Shao J, Si B, Jin J. 2019. Rooting depth and extreme precipitation regulate groundwater recharge in the thick unsaturated zone: A case study. Water 11: 1232.
Shinozaki K, Yoda K, Hozumi K, Kira T. 1964. A quantitative analysis of plant form-the pipe model theory: I. Basic analyses. Japanese Journal of Ecology 14: 97-105.
Sivandran G, Bras RL. 2013. Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed. Water Resources Research 49: 3292-3305.
Sperry JS, Love DM. 2015. Tansley review: What plant hydraulics can tell us about plant responses to climate-change droughts. New Phytologist 207: 14-27.
Sperry JS, Smith DD, Savage VM, Enquist BJ, McCulloh KA, Reich PB, Bentley LP, von Allmen EI. 2012. A species-level model for metabolic scaling in trees I. Exploring boundaries to scaling space within and across species. Functional Ecology 26: 1054-1065.
Sperry JS, Venturas MD, Anderegg WR, Mencuccini M, Mackay DS, Wang Y, Love DM. 2017. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment 40: 816-830.
Sperry JS, Venturas MD, Todd HN, Trugman AT, Anderegg WR, Wang Y, Tai X. 2019. The impact of rising CO2 and acclimation on the response of US forests to global warming. Proceedings of the National Academy of Sciences, USA 116: 25734-25744.
Sperry JS, Wang Y, Wolfe B, Mackay DS, Anderegg WRL, McDowell NG, Pockman WT. 2016. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist 212: 577-589.
Stulen I, Den Hertog J. 1993. Root growth and functioning under atmospheric CO2 enrichment. Vegetatio 104: 99-115.
Sus O, Poyatos R, Barba J, Carvalhais N, Llorens P, Williams M, Vilalta J. 2014. Time variable hydraulic parameters improve the performance of a mechanistic stand transpiration model. A case study of Mediterranean Scots pine sap flow data assimilation. Agricultural & Forest Meteorology 198-199: 168-180.
Tai X, Mackay DS, Sperry JS, Brooks P, Anderegg WRL, Flanagan LB, Rood SB, Hopkinson C. 2018. Distributed plant hydraulic and hydrological modeling to understand the susceptibility of riparian woodland trees to drought-induced mortality. Water Resources Research 54: 4901-4915.
Thornley JH, Parsons AJ. 2014. Allocation of new growth between shoot, root and mycorrhiza in relation to carbon, nitrogen and phosphate supply: teleonomy with maximum growth rate. Journal of Theoretical Biology 342: 1-14.
Torres-Ruiz JM, Cochard H, Mencuccini M, Delzon S, Badel E. 2016. Direct observation and modelling of embolism spread between xylem conduits: a case study in Scots pine. Plant, Cell & Environment 39: 2774-2785.
Trugman AT, Anderegg LD, Sperry JS, Wang Y, Venturas M, Anderegg WR. 2019a. Leveraging plant hydraulics to yield predictive and dynamic plant leaf allocation in vegetation models with climate change. Global Change Biology 25: 4008-4021.
Trugman AT, Anderegg LDL, Wolfe BT, Birami B, Ruehr NK, Detto M, Bartlett MK, Anderegg WRL. 2019. Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity. Global Change Biology 25: 3395-3405.
Tsuda M, Tyree MT. 1997. Whole-plant hydraulic resistance and vulnerability segmentation in Acer saccharinum. Tree Physiology 17: 351-357.
Van Wijk MT, Bouten W. 2001. Towards understanding tree root profiles: simulating hydrologically optimal strategies for root distribution. Hydrology and Earth System Sciences Discussions, European Geosciences Union 2001: 629-644.
Venturas MD, Sperry JS, Love DM, Frehner EH, Allred MG, Wang Y, Anderegg WR. 2018. A stomatal control model based on optimization of carbon gain vs hydraulic risk predicts aspen sapling responses to drought. New Phytologist 220: 836-850.
Wang Y, Sperry JS, Venturas MD, Trugman AT, Love DM, Anderegg WR. 2019. The stomatal response to rising CO2 concentration and drought is predicted by a hydraulic trait-based optimization model. Tree Physiology 39: 1416-1427.
Wang Y, Sperry JS, Anderegg WR, Venturas MD, Trugman AT. 2020. A theoretical and empirical assessment of stomatal optimization modeling. New Phytologist 227: 311-325.
West GB, Brown JH, Enquist BJ. 1999. A general model for the structure and allometry of plant vascular systems. Nature 400: 664-667.
West GB, Enquist BJ, Brown JH. 2009. A general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences, USA 106: 7040-7045.
Wolf A, Anderegg WR, Pacala SW. 2016. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences, USA 113: E7222-E7230.
Xia J, Yuan W, Lienert S, Joos F, Ciais P, Viovy N, Wang Y, Wang X, Zhang H, Chen Y et al. 2019. Global patterns in net primary production allocation regulated by environmental conditions and forest stand age: a model-data comparison. Journal of Geophysical Research: Biogeosciences 124: 2039-2059.
Xu GQ, Yu DD, Li Y. 2017. Patterns of biomass allocation in Haloxylon persicum woodlands and their understory herbaceous layer along a groundwater depth gradient. Forest Ecology and Management 395: 37-47.
Yang J, Medlyn BE, De Kauwe MG, Duursma RA. 2018. Applying the concept of ecohydrological equilibrium to predict steady state leaf area index. Journal of Advances in Modeling Earth Systems 10: 1740-1758.
Zha T, Kellomäki S, Wang KY, Ryyppö A, Niinistö S. 2004. Seasonal and annual stem respiration of Scots pine trees under boreal conditions. Annals of Botany 94: 889-896.
Zolfaghar S, Villalobos-Vega R, Cleverly J, Zeppel M, Rumman R, Eamus D. 2014. The influence of depth-to-groundwater on structure and productivity of Eucalyptus woodlands. Australian Journal of Botany 62: 428-437.
Zolfaghar S, Villalobos-Vega R, Zeppel M, Eamus D. 2015. The hydraulic architecture of Eucalyptus trees growing across a gradient of depth-to-groundwater. Functional Plant Biology 42: 888-898.
Contributed Indexing:
Keywords: CO2 enrichment; carbon allocation; groundwater; hydraulic limitations; optimality; stomatal control; tree allometry; tree drought responses
Substance Nomenclature:
059QF0KO0R (Water)
Entry Date(s):
Date Created: 20210201 Date Completed: 20210604 Latest Revision: 20210604
Update Code:
20240104
DOI:
10.1111/nph.17242
PMID:
33521942
Czasopismo naukowe
Trees partition biomass in response to resource limitation and physiological activity. It is presumed that these strategies evolved to optimize some measure of fitness. If the optimization criterion can be specified, then allometry can be modeled from first principles without prescribed parameterization. We present the Tree Hydraulics and Optimal Resource Partitioning (THORP) model, which optimizes allometry by estimating allocation fractions to organs as proportional to their ratio of marginal gain to marginal cost, where gain is net canopy photosynthesis rate, and costs are senescence rates. Root total biomass and profile shape are predicted simultaneously by a unified optimization. Optimal partitioning is solved by a numerically efficient analytical solution. THORP's predictions agree with reported tree biomass partitioning in response to size, water limitations, elevated CO 2 and pruning. Roots were sensitive to soil moisture profiles and grew down to the groundwater table when present. Groundwater buffered against water stress regardless of meteorology, stabilizing allometry and root profiles as deep as c. 30 m. Much of plant allometry can be explained by hydraulic considerations. However, nutrient limitations cannot be fully ignored. Rooting mass and profiles were synchronized with hydrological conditions and groundwater even at considerable depths, illustrating that the below ground shapes whole-tree allometry.
(© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies