Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth.

Tytuł:
Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth.
Autorzy:
Zhu E; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.; University of Chinese Academy of Sciences, Beijing, China.
Cao Z; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.; University of Chinese Academy of Sciences, Beijing, China.
Jia J; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
Liu C; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.; University of Chinese Academy of Sciences, Beijing, China.
Zhang Z; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
Wang H; State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.
Dai G; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
He JS; State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Feng X; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.; University of Chinese Academy of Sciences, Beijing, China.
Źródło:
Global change biology [Glob Chang Biol] 2021 May; Vol. 27 (10), pp. 2241-2253. Date of Electronic Publication: 2021 Feb 11.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
MeSH Terms:
Carbon*
Grassland*
Droughts ; Nitrogen/analysis ; Soil ; Soil Microbiology
References:
Allison, S. D., Chacon, S. S., & German, D. P. (2014). Substrate concentration constraints on microbial decomposition. Soil Biology and Biochemistry, 79, 43-49. https://doi.org/10.1016/j.soilbio.2014.08.021.
Allison, S. D., & Vitousek, P. M. (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 37(5), 937-944. https://doi.org/10.1016/j.soilbio.2004.09.014.
Amelung, W. (2001). Methods using amino sugars as markers for microbial residues in soil. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment methods for soil carbon (pp. 233-270). CRC/Lewis Publishers.
Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J., & Averill, C. (2020). Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth, 2(4), 349-360. https://doi.org/10.1016/j.oneear.2020.03.006.
Bicharanloo, B., Bagheri Shirvan, M., Keitel, C., & Dijkstra, F. A. (2020). Rhizodeposition mediates the effect of nitrogen and phosphorous availability on microbial carbon use efficiency and turnover rate. Soil Biology and Biochemistry, 142, 107705. https://doi.org/10.1016/j.soilbio.2020.107705.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Biochemistry and Cell Biology, 37(8), 911-917. https://doi.org/10.1139/o59-099.
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., & Vargas, R. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560(7716), 80-83. https://doi.org/10.1038/s41586-018-0358-x.
Bradford, M. A. (2013). Thermal adaptation of decomposer communities in warming soils. Frontiers in Microbiology, 4(333), 333. https://doi.org/10.3389/fmicb.2013.00333.
Bradford, M. A., Keiser, A. D., Davies, C. A., Mersmann, C. A., & Strickland, M. S. (2013). Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 113(1-3), 271-281. https://doi.org/10.1007/s10533-012-9822-0.
Burke, D. J., Weintraub, M. N., Hewins, C. R., & Kalisz, S. (2011). Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biology and Biochemistry, 43(4), 795-803. https://doi.org/10.1016/j.soilbio.2010.12.014.
Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N., & Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216-234. https://doi.org/10.1016/j.soilbio.2012.11.009.
Cao, Z., Jia, Y., Cai, Y., Wang, X., Hu, H., Zhang, J., Jia, J., & Feng, X. (2019). Past aridity's effect on carbon mineralization potentials in grassland soils. Biogeosciences, 16(18), 3605-3619. https://doi.org/10.5194/bg-16-3605-2019.
Cheeke, T. E., Phillips, R. P., Brzostek, E. R., Rosling, A., Bever, J. D., & Fransson, P. (2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 214(1), 432-442. https://doi.org/10.1111/nph.14343.
Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y., Zhu, D., Yang, G., Tian, J., Kang, X., Piao, S., Ouyang, H., Xiang, W., Luo, Z., Jiang, H., Song, X., Zhang, Y., Yu, G., … Wu, J. (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19(10), 2940-2955. https://doi.org/10.1111/gcb.12277.
Chen, J. I., Elsgaard, L., Groenigen, K. J., Olesen, J. E., Liang, Z., Jiang, Y. U., Laerke, P. E., Zhang, Y., Luo, Y., Hungate, B. A., Sinsabaugh, R. L., & Jørgensen, U. (2020). Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Global Chang Biology, 26, 1944-1952. https://doi.org/10.1111/gcb.14986.
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., & Parton, W. J. (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779. https://doi.org/10.1038/ngeo2520.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988-995. https://doi.org/10.1111/gcb.12113.
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., … Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540, 104-108. https://doi.org/10.1038/nature20150.
Cui, J., Zhu, Z., Xu, X., Liu, S., Jones, D. L., Kuzyakov, Y., Shibistova, O., Wu, J., & Ge, T. (2020). Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biology and Biochemistry, 142, 107720. https://doi.org/10.1016/j.soilbio.2020.107720.
Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(2), 52-58. https://doi.org/10.1038/nclimate1633.
De Nijs, E. A., Hicks, L. C., Leizeaga, A., Tietema, A., & Rousk, J. (2019). Soil microbial moisture dependences and responses to drying-rewetting: The legacy of 18 years drought. Global Change Biology, 25(3), 1005-1015. https://doi.org/10.1111/gcb.14508.
Denef, K., Roobroeck, D., Wadu, M. C. M., Lootens, P., & Boeckx, P. (2009). Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biology and Biochemistry, 41(1), 144-153. https://doi.org/10.1016/j.soilbio.2008.10.008.
Doetterl, S., Berhe, A. A., Arnold, C., Bodé, S., Fiener, P., Finke, P., Fuchslueger, L., Griepentrog, M., Harden, J. W., Nadeu, E., Schnecker, J., Six, J., Trumbore, S., Van Oost, K., Vogel, C., & Boeckx, P. (2018). Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nature Geoscience, 11(8), 589-593. https://doi.org/10.1038/s41561-018-0168-7.
Fierer, N., Allen, A. S., Schimel, J. P., & Holden, P. A. (2003). Controls on microbial CO2 production: A comparison of surface and subsurface soil horizons. Global Change Biology, 9(9), 1322-1332. https://doi.org/10.1046/j.1365-2486.2003.00663.x.
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277-280. https://doi.org/10.1038/nature06275.
Frostegård, A., & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65. https://doi.org/10.1007/BF00384433.
Glaser, B., Turrion, M., & Alef, K. (2004). Amino sugars and muramic acid-biomarkers for soil microbial community structure analysis. Soil Biology and Biochemistry, 36(3), 399-407. https://doi.org/10.1016/j.soilbio.2003.10.013.
Guckert, J. B., Antworth, C. P., Nichols, P. D., & White, D. C. (1985). Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiology Letters, 31(3), 147-158. https://doi.org/10.1016/0378-1097(85)90016-3.
Guggenberger, G., Frey, S. D., Six, J., Paustian, K., & Elliott, E. T. (1999). Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Science Society of America Journal, 63(5), 1188-1198. https://doi.org/10.2136/sssaj1999.6351188x.
Hall, S. J., & Silver, W. L. (2015). Reducing conditions, reactive metals, and their interactions can explain spatial patterns of surface soil carbon in a humid tropical forest. Biogeochemistry, 125(2), 149-165. https://doi.org/10.1007/s10533-015-0120-5.
Harris, D., Horwáth, W. R., & Van Kessel, C. (2001). Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Science Society of America Journal, 65(6), 1853-1856. https://doi.org/10.2136/sssaj2001.1853.
Harwood, J. L., & Russell, N. J. (1984). Lipids in plants and microbes. George Allen and Unwin Ltd.
Heuck, C., Weig, A., & Spohn, M. (2015). Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry, 85, 119-129. https://doi.org/10.1016/j.soilbio.2015.02.029.
Hicks Pries, C. E., Castanha, C., Porras, R. C., & Torn, M. S. (2017). The whole-soil carbon flux in response to warming. Science, 355(6332), 1420-1422. https://doi.org/10.1126/science.aal1319.
Hicks Pries, C. E., Schuur, E. A. G., Natali, S. M., & Crummer, K. G. (2016). Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Climate Change, 6, 214-218. https://doi.org/10.1038/nclimate2830.
Hill, P. W., & Jones, D. L. (2019). Plant-microbe competition: Does injection of isotopes of C and N into the rhizosphere effectively characterise plant use of soil N? New Phytologist, 221(2), 796-806. https://doi.org/10.1111/nph.15433.
Jia, J., Cao, Z., Liu, C., Zhang, Z., Lin, L. I., Wang, Y., Haghipour, N., Wacker, L., Bao, H., Dittmar, T., Simpson, M. J., Yang, H., Crowther, T. W., Eglinton, T. I., He, J.-S., & Feng, X. (2019). Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Global Change Biology, 25(12), 4383-4393. https://doi.org/10.1111/gcb.14823.
Jia, J., Feng, X., He, J.-S., He, H., Lin, L., & Liu, Z. (2017). Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland. Soil Biology and Biochemistry, 104, 141-151. https://doi.org/10.1016/j.soilbio.2016.10.018.
Jones, D. L., Magthab, E. A., Gleeson, D. B., Hill, P. W., Sánchez-Rodríguez, A. R., Roberts, P., Ge, T., & Murphy, D. V. (2018). Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biology and Biochemistry, 117, 72-82. https://doi.org/10.1016/j.soilbio.2017.10.024.
Jones, J., & Richards, B. (1977). Effect of reforestation on turnover of 15N-labelled nitrate and ammonium in relation to changes in soil microflora. Soil Biology and Biochemistry, 9(6), 383-392. https://doi.org/10.1016/0038-0717(77)90016-5.
Kaiser, C., Franklin, O., Dieckmann, U., & Richter, A. (2014). Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters, 17(6), 680-690. https://doi.org/10.1111/ele.12269.
Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 7, 13630. https://doi.org/10.1038/ncomms13630.
Koven, C. D., Hugelius, G., Lawrence, D. M., & Wieder, W. R. (2017). Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Climate Change, 7, 817-822. https://doi.org/10.1038/nclimate3421.
Li, J., Wang, G., Mayes, M. A., Allison, S. D., Frey, S. D., Shi, Z., Hu, X.-M., Luo, Y., & Melillo, J. M. (2019). Reduced carbon use efficiency and increased microbial turnover with soil warming. Global Change Biology, 25(3), 900-910. https://doi.org/10.1111/gcb.14517.
Liang, C., Amelung, W., Lehmann, J., & Kästner, M. (2019). Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25(11), 3578-3590. https://doi.org/10.1111/gcb.14781.
Liang, C., Fujinuma, R., & Balser, T. C. (2008). Comparing PLFA and amino sugars for microbial analysis in an Upper Michigan old growth forest. Soil Biology and Biochemistry, 40(8), 2063-2065. https://doi.org/10.1016/j.soilbio.2008.01.022.
Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2(8), 17105. https://doi.org/10.1038/nmicrobiol.2017.105.
Liu, H., Lin, L. I., Wang, H., Zhang, Z., Shangguan, Z., Feng, X., & He, J.-S. (2020). Simulating warmer and drier climate increases root production but decreases root decomposition in an alpine grassland on the Tibetan plateau. Plant and Soil, 458(1-2), 59-73. https://doi.org/10.1007/s11104-020-04551-y.
Liu, H., Mi, Z., Lin, L. I., Wang, Y., Zhang, Z., Zhang, F., Wang, H., Liu, L., Zhu, B., Cao, G., Zhao, X., Sanders, N. J., Classen, A. T., Reich, P. B., & He, J.-S. (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115(16), 4051-4056. https://doi.org/10.1073/pnas.1700299114.
Ma, T., Zhu, S., Wang, Z., Chen, D., Dai, G., Feng, B., Su, X., Hu, H., Li, K., Han, W., Liang, C., Bai, Y., & Feng, X. (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. https://doi.org/10.1038/s41467-018-05891-1.
Manzoni, S., Taylor, P. G., Richter, A., Porporato, A., & Agren, G. I. (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196(1), 79-91. https://doi.org/10.1111/j.1469-8137.2012.04225.x.
Mcdaniel, M. D., Kaye, J. P., & Kaye, M. W. (2013). Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest. Soil Biology and Biochemistry, 56, 90-98. https://doi.org/10.1016/j.soilbio.2012.02.026.
Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., & Grandy, A. S. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358(6359), 101-105. https://doi.org/10.1126/science.aan2874.
R Development Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/.
Rumpel, C., Chabbi, A., & Marschner, B. (2012). Carbon storage and sequestration in subsoil horizons: Knowledge, gaps and potentials. In Recarbonization of the biosphere (pp. 445-464). Springer. https://doi.org/10.1007/978-94-007-4159-1-20.
Saiya-Cork, K. R., Sinsabaugh, R. L., & Zak, D. R. (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34(9), 1309-1315. https://doi.org/10.1016/s0038-0717(02)00074-3.
Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., & Chenu, C. (2010). Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biology, 16(1), 416-426. https://doi.org/10.1111/j.1365-2486.2009.01884.x.
Sardans, J., & Penuelas, J. (2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry, 37(3), 455-461. https://doi.org/10.1016/j.soilbio.2004.08.004.
Schimel, J. P., & Weintraub, M. N. (2003). The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biology and Biochemistry, 35(4), 549-563. https://doi.org/10.1016/S0038-0717(03)00015-4.
Seo, J., Jang, I., Jung, J. Y., Lee, Y. K., & Kang, H. (2015). Warming and increased precipitation enhance phenol oxidase activity in soil while warming induces drought stress in vegetation of an Arctic ecosystem. Geoderma, 259, 347-353. https://doi.org/10.1016/j.geoderma.2015.03.017.
Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., Thieler, K. K., Downs, M. R., Laundre, J. A., & Rastetter, E. B. (2006). Carbon turnover in Alaskan tundra soils: Effects of organic matter quality, temperature, moisture and fertilizer. Journal of Ecology, 94(4), 740-753. https://doi.org/10.2307/3879542.
Sinsabaugh, R. L., Hill, B. H., & Shah, J. J. F. (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462(7274), 795-798. https://doi.org/10.1038/nature08632.
Sistla, S. A., & Schimel, J. P. (2013). Seasonal patterns of microbial extracellular enzyme activities in an arctic tundra soil: Identifying direct and indirect effects of long-term summer warming. Soil Biology and Biochemistry, 66, 119-129. https://doi.org/10.1016/j.soilbio.2013.07.003.
Sokol, N. W., & Bradford, M. A. (2018). Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 12(1), 46-53. https://doi.org/10.1038/s41561-018-0258-6.
Solly, E. F., Schöning, I., Boch, S., Kandeler, E., Marhan, S., Michalzik, B., Müller, J., Zscheischler, J., Trumbore, S. E., & Schrumpf, M. (2014). Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 382(1-2), 203-218. https://doi.org/10.1007/s11104-014-2151-4.
Spohn, M., Pötsch, E. M., Eichorst, S. A., Woebken, D., Wanek, W., & Richter, A. (2016). Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology and Biochemistry, 97, 168-175. https://doi.org/10.1016/j.soilbio.2016.03.008.
Stookey, L. L. (1970). Ferrozine - A new spectrophotometric reagent for iron. Analytical Chemistry, 42(7), 779-781. https://doi.org/10.1021/ac60289a016.
Sun, T., Hobbie, S. E., Berg, B., Zhang, H., Wang, Q., Wang, Z., & Hättenschwiler, S. (2018). Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10392-10397. https://doi.org/10.1073/pnas.1716595115.
Taylor, P. G., & Townsend, A. R. (2010). Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature, 464(7292), 1178-1181. https://doi.org/10.1038/nature08985.
Thomas, B. W., Hao, X., Larney, F. J., Goyer, C., Chantigny, M. H., & Charles, A. (2017). Non-legume cover crops can increase non-growing season nitrous oxide emissions. Soil Science Society of America Journal, 81(1), 189-199. https://doi.org/10.2136/sssaj2016.08.0269.
Wang, J., Zhang, J., Müller, C., & Cai, Z. (2017). Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Soils and Sediments, 17(2), 423-431. https://doi.org/10.1007/s11368-016-1530-2.
Wei, L., Razavi, B. S., Wang, W., Zhu, Z., Liu, S., Wu, J., Kuzyakov, Y., & Ge, T. (2019). Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biology and Biochemistry, 135, 134-143. https://doi.org/10.1016/j.soilbio.2019.04.016.
Wickland, K. P., Aiken, G. R., Butler, K., Dornblaser, M. M., Spencer, R. G. M., & Striegl, R. G. (2012). Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: Seasonality and importance of inorganic nitrogen. Global Biogeochemical Cycles, 26, GB0E03. https://doi.org/10.1029/2012gb004342.
WRB, I. W. G. (2015). World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Xiang, S.-R., Doyle, A., Holden, P. A., & Schimel, J. P. (2008). Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 40, 2281-2289. https://doi.org/10.1016/j.soilbio.2008.05.004.
Xu, X., Ouyang, H., Kuzyakov, Y., Richter, A., & Wanek, W. (2006). Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet plateau. China. Plant and Soil, 285(1-2), 221-231. https://doi.org/10.1007/s11104-006-9007-5.
Xu, Z., Gong, T. L., & Li, J. (2008). Decadal trend of climate in the Tibetan Plateau-regional temperature and precipitation. Hydrological Processes, 22(16), 3056-3065. https://doi.org/10.1002/hyp.6892.
Zhang, K., Shi, Y. U., Jing, X., He, J.-S., Sun, R., Yang, Y., Shade, A., & Chu, H. (2016). Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau. Frontiers in Microbiology, 7, 1032. https://doi.org/10.3389/fmicb.2016.01032.
Zhang, X. D., & Amelung, W. (1996). Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 28(9), 1201-1206. https://doi.org/10.1016/0038-0717(96)00117-4.
Zhu, E., Liu, T., Zhou, L., Wang, S., Wang, X., Zhang, Z., Wang, Z., Bai, Y., & Feng, X. (2020). Leaching of organic carbon from grassland soils under anaerobiosis. Soil Biology and Biochemistry, 141, 107684. https://doi.org/10.1016/j.soilbio.2019.107684.
Zuccarini, P., Asensio, D., Ogaya, R., Sardans, J., & Penuelas, J. (2020). Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Global Change Biology, 26(6), 3698-3714. https://doi.org/10.1111/gcb.15077.
Grant Information:
2019YFA0607303 National Key R&D Program of China; 31988102 National Natural Science Foundation of China; 42025303 National Natural Science Foundation of China; 31971502 National Natural Science Foundation of China; GJTD-2019-10 Chinese Academy of Sciences K.C.Wong Education Foundation
Contributed Indexing:
Keywords: carbon utilization efficiency; climate change; deep soil; microbial necromass; mineralization potential; nitrogen limitation; soil organic carbon
Substance Nomenclature:
0 (Soil)
7440-44-0 (Carbon)
N762921K75 (Nitrogen)
Entry Date(s):
Date Created: 20210202 Date Completed: 20210423 Latest Revision: 20210423
Update Code:
20240104
DOI:
10.1111/gcb.15541
PMID:
33528033
Czasopismo naukowe
Subsoils contain >50% of soil organic carbon (SOC) globally yet remain under-investigated in terms of their response to climate changes. Recent evidence suggests that warmer, drier conditions in alpine grasslands induce divergent responses in SOC decomposition and carbon accrual in top- versus subsoils. However, longer term effects on microbial activity (i.e., catabolic respiration vs. anabolic growth) and belowground carbon cycling are not well understood. Here we utilized a field manipulation experiment on the Qinghai-Tibetan Plateau and conducted a 110-day soil incubation with and without 13 C-labeled grass litter to assess microbes' role as both SOC "decomposers" and "contributors" in the top- (0-10 cm) versus subsoils (30-40 cm) after 5 years of warming and drought treatments. Microbial mineralization of both SOC and added litter was examined in tandem with potential extracellular enzyme activities, while microbial biomass synthesis and necromass accumulation were analyzed using phospholipid fatty acids and amino sugars coupled with 13 C analysis, respectively. We found that warming and, to a lesser extent, drought decreased the ratio of inorganic nitrogen (N) to water-extractable organic carbon in the subsoil, intensifying N limitation at depth. Both SOC and litter mineralization were reduced in the subsoil, which may also be related to N limitation, as evidenced by lower hydrolase activity (especially leucine aminopeptidase) and reduced microbial efficiency (lower biomass synthesis and necromass accumulation relative to respiration). However, none of these effects were observed in the topsoil, suggesting that soil microbes became inactive and inefficient in subsoil but not topsoil environments. Given increasing belowground productivity in this alpine grassland under warming, both elevated root deposits and diminished microbial activity may contribute to new carbon accrual in the subsoil. However, the sustainability of plant growth and persistence of subsoil SOC pools deserve further investigation in the long term, given the aggravated N limitation at depth.
(© 2021 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies