Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt.

Tytuł:
FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt.
Autorzy:
Shen W; Department of Cardiovascular, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Road, Hefei, 230001, China.
Li H; Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
Su H; Department of Cardiovascular, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Road, Hefei, 230001, China.
Chen K; Department of Cardiovascular, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Road, Hefei, 230001, China.
Yan J; Department of Cardiovascular, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Road, Hefei, 230001, China. .
Źródło:
Molecular and cellular biochemistry [Mol Cell Biochem] 2021 May; Vol. 476 (5), pp. 2171-2179. Date of Electronic Publication: 2021 Feb 06.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York : Springer
Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
MeSH Terms:
Apoptosis*
Gene Expression Regulation, Enzymologic*
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/*biosynthesis
Myocardial Reperfusion Injury/*metabolism
Myocardium/*metabolism
Myocytes, Cardiac/*metabolism
RNA, Long Noncoding/*metabolism
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics ; Animals ; Male ; Methylation ; Mice ; Myocardial Reperfusion Injury/genetics ; Myocardial Reperfusion Injury/pathology ; Myocardium/pathology ; Myocytes, Cardiac/pathology ; RNA, Long Noncoding/genetics
References:
Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O'Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137:e67–e492. https://doi.org/10.1161/cir.0000000000000558. (PMID: 10.1161/cir.000000000000055829386200)
Duygu B, Poels EM, da Costa Martins PA (2013) Genetics and epigenetics of arrhythmia and heart failure. Front Genet 4:219. https://doi.org/10.3389/fgene.2013.00219. (PMID: 10.3389/fgene.2013.00219241988253812794)
Aguilo F, Walsh MJ (2017) The N6-Methyladenosine RNA modification in pluripotency and reprogramming. Curr Opin Genet Dev 46:77–82. https://doi.org/10.1016/j.gde.2017.06.006. (PMID: 10.1016/j.gde.2017.06.006286833415626584)
Coker H, Wei G, Brockdorff N (2019) m6A modification of non-coding RNA and the control of mammalian gene expression. Biochimica et biophysica acta Gene Regul Mech 1862:310–318. https://doi.org/10.1016/j.bbagrm.2018.12.002. (PMID: 10.1016/j.bbagrm.2018.12.002)
Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH, Accornero F (2019) The N-Methyladenosine mRNA Methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139:533–545. https://doi.org/10.1161/circulationaha.118.036146. (PMID: 10.1161/circulationaha.118.03614630586742)
Pan T (2013) N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci 38:204–209. https://doi.org/10.1016/j.tibs.2012.12.006. (PMID: 10.1016/j.tibs.2012.12.006233377693608796)
Gustavsson J, Mehlig K, Leander K, Lissner L, Bjorck L, Rosengren A, Nyberg F (2014) FTO genotype, physical activity, and coronary heart disease risk in Swedish men and women. Circ Cardiovasc Genet 7:171–177. (PMID: 10.1161/CIRCGENETICS.111.000007)
Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, Chen J, Trivieri MG, Singh R, Bouchareb R, Fish K, Ishikawa K, Lebeche D, Hajjar RJ, Sahoo S (2019) FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139:518–532. https://doi.org/10.1161/circulationaha.118.033794. (PMID: 10.1161/circulationaha.118.033794299971166400591)
Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, Mohamed BA, Renner A, von Lewinski D, Sacherer M, Bohnsack KE, Bohnsack MT, Jain G, Capece V, Cleve N, Burkhardt S, Hasenfuss G, Fischer A, Toischer K (2020) Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail 22:54–66. https://doi.org/10.1002/ejhf.1672. (PMID: 10.1002/ejhf.167231849158)
Zhang L, Wu YJ, Zhang SL (2019) Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. J Geriatric Cardiol JGC 16:818–821. https://doi.org/10.11909/j.issn.1671-5411.2019.11.006. (PMID: 10.11909/j.issn.1671-5411.2019.11.006)
Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106. https://doi.org/10.1038/nature13596. (PMID: 10.1038/nature13596251190454184960)
Li HQ, Wu YB, Yin CS, Chen L, Zhang Q, Hu LQ (2016) Obestatin attenuated doxorubicin-induced cardiomyopathy via enhancing long noncoding Mhrt RNA expression. Biomed Pharmacother 81:474–481. https://doi.org/10.1016/j.biopha.2016.04.017. (PMID: 10.1016/j.biopha.2016.04.01727261628)
Hampton C, Rosa R, Campbell B, Kennan R, Gichuru L, Ping X, Shen X, Small K, Madwed J, Lynch JJ (2017) Early echocardiographic predictors of outcomes in the mouse transverse aortic constriction heart failure model. J Pharmacol Toxicol Methods 84:93–101. https://doi.org/10.1016/j.vascn.2016.12.001. (PMID: 10.1016/j.vascn.2016.12.00127956205)
Karthiya R, Khandelia P (2020) m6A RNA methylation: ramifications for gene expression and human health. Mol Biotechnol. https://doi.org/10.1007/s12033-020-00269-5.
Tuncel G, Kalkan R (2019) Importance of m N-methyladenosine (mA) RNA modification in cancer. Med Oncol 36:36. https://doi.org/10.1007/s12032-019-1260-6. (PMID: 10.1007/s12032-019-1260-630879160)
Ferenc K, Pilžys T, Garbicz D, Marcinkowski M, Skorobogatov O, Dylewska M, Gajewski Z, Grzesiuk E, Zabielski R (2020) Intracellular and tissue specific expression of FTO protein in pig: changes with age, energy intake and metabolic status. Sci Rep 10:13029. https://doi.org/10.1038/s41598-020-69856-5. (PMID: 10.1038/s41598-020-69856-5327477367400765)
Hirayama M, Wei FY, Chujo T, Oki S, Yakita M, Kobayashi D, Araki N, Takahashi N, Yoshida R, Nakayama H, Tomizawa K (2020) FTO Demethylates cyclin D1 mRNA and controls cell-cycle progression. Cell Rep 31:107464. https://doi.org/10.1016/j.celrep.2020.03.028. (PMID: 10.1016/j.celrep.2020.03.02832268083)
Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, Chen J, Trivieri MG, Singh R, Bouchareb R, Fish K, Ishikawa K, Lebeche D, Hajjar RJ, Sahoo S (2019) FTO-dependent N-Methyladenosine regulates cardiac function during remodeling and repair. Circulation 139:518–532. https://doi.org/10.1161/circulationaha.118.033794. (PMID: 10.1161/circulationaha.118.033794299971166400591)
Franczak A, Kolačkov K, Jawiarczyk-Przybyłowska A, Bolanowski M (2018) Association between FTO gene polymorphisms and HDL cholesterol concentration may cause higher risk of cardiovascular disease in patients with acromegaly. Pituitary 21:10–15. https://doi.org/10.1007/s11102-017-0840-8. (PMID: 10.1007/s11102-017-0840-828913579)
Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116:737–750. https://doi.org/10.1161/circresaha.116.302521. (PMID: 10.1161/circresaha.116.30252125677520)
Aboud HM, Mahmoud MO, Abdeltawab Mohammed M, Shafiq Awad M, Sabry D (2020) viaPreparation and appraisal of self-assembled valsartan-loaded amalgamated Pluronic F127/tween 80 polymeric micelles: boosted cardioprotection regulation of Mhrt/Nrf2 and Trx1 pathways in cisplatin-induced cardiotoxicity. J Drug Target 28:282–299. https://doi.org/10.1080/1061186x.2019.1650053. (PMID: 10.1080/1061186x.2019.165005331353972)
Zhou KI, Parisien M, Dai Q, Liu N, Diatchenko L, Sachleben JR, Pan T (2016) N(6)-Methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. J Mol Biol 428:822–833. https://doi.org/10.1016/j.jmb.2015.08.021. (PMID: 10.1016/j.jmb.2015.08.02126343757)
Song H, Li H, Ding X, Li M, Shen H, Li Y, Zhang X, Xing L (2020) Long non-coding RNA FEZF1-AS1 facilitates non-small cell lung cancer progression via the ITGA11/miR-516b-5p axis. Int J Oncol 57:1333–1347. https://doi.org/10.3892/ijo.2020.5142. (PMID: 10.3892/ijo.2020.5142331740147646599)
Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104. https://doi.org/10.1038/sj.cdd.4400476. (PMID: 10.1038/sj.cdd.440047610200555)
Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619. https://doi.org/10.1016/0092-8674(93)90509-o. (PMID: 10.1016/0092-8674(93)90509-o8358790)
Qin Y, Li L, Luo E, Hou J, Yan G, Wang D, Qiao Y, Tang C (2020) Role of m6A RNA methylation in cardiovascular disease (review). Int J Mol Med 46:1958–1972. https://doi.org/10.3892/ijmm.2020.4746. (PMID: 10.3892/ijmm.2020.4746331251097595665)
Zhao K, Yang CX, Li P, Sun W, Kong XQ (2020) Epigenetic role of N6-methyladenosine (m6A) RNA methylation in the cardiovascular system. J Zhejiang Univ Sci B 21:509–523. https://doi.org/10.1631/jzus.B1900680. (PMID: 10.1631/jzus.B1900680326331067383322)
Zhang L, Wu YJ, Zhang SL (2019) Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. J Geriatr Cardiol 16:818–821. https://doi.org/10.11909/j.issn.1671-5411.2019.11.006. (PMID: 10.11909/j.issn.1671-5411.2019.11.006318532476911805)
Grant Information:
2016080802D113 The special projects of development in local science and technology guided by the central government; 1808085MH281 Natural Science Foundation of Anhui Province; WK9110000046 New Medicine of University of Science and Technology of China
Contributed Indexing:
Keywords: Apoptosis; FTO; Heart failure; Mhrt; m6A modification
Substance Nomenclature:
0 (RNA, Long Noncoding)
EC 1.14.11.- (FTO protein, mouse)
EC 1.14.11.33 (Alpha-Ketoglutarate-Dependent Dioxygenase FTO)
Entry Date(s):
Date Created: 20210206 Date Completed: 20210728 Latest Revision: 20210728
Update Code:
20240104
DOI:
10.1007/s11010-021-04069-6
PMID:
33548009
Czasopismo naukowe
Heart failure (HF) is the end stage of many cardiovascular diseases and seriously threatens people's health. This article aimed to explore the biological role of fat-mass and obesity-associated gene (FTO) in HF. We constructed HF mouse model by transverse aortic constriction or intraperitoneal injection of doxorubicin. Mouse myocardial cells were exposed to hypoxia/reoxygenation (H/R). FTO and Mhrt were downregulated in heart tissues of HF mice. HF mice exhibited an increase in the total levels of N 6 methyladenosine (m 6 A) and the m 6 A levels of Mhrt. Moreover, FTO overexpression caused an upregulation of Mhrt and reduced m 6 A modification of Mhrt in the H/R-treated myocardial cells. FTO upregulation repressed apoptosis of H/R-treated myocardial cells. FTO knockdown had the opposite results. Mhrt overexpression reduced apoptosis of H/R-treated myocardial cells. Moreover, the influence conferred by FTO upregulation was abolished by Mhrt knockdown. In conclusion, our data demonstrate that FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Thus, FTO may be a target gene for HF treatment.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies