Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Acrylamide in bread: a review on formation, health risk assessment, and determination by analytical techniques.

Tytuł:
Acrylamide in bread: a review on formation, health risk assessment, and determination by analytical techniques.
Autorzy:
Mollakhalili-Meybodi N; Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.; Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Khorshidian N; Food Safety Research Center (Salt), School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran.
Nematollahi A; Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran. .
Arab M; Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2021 Apr; Vol. 28 (13), pp. 15627-15645. Date of Electronic Publication: 2021 Feb 06.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Acrylamide*
Bread*/analysis
Chromatography, Liquid ; Food Contamination/analysis ; Humans ; Risk Assessment ; Tandem Mass Spectrometry
References:
Alpözen E, Güven G, Özdestan Ö, Üren A (2015) Determination of acrylamide in three different bread types by an in-house validated LC-MS/MS method. Acta Alimentaria 44:211–220. https://doi.org/10.1556/AAlim.2013.3333. (PMID: 10.1556/AAlim.2013.3333)
Altissimi MS, Roila R, Branciari R, Miraglia D, Ranucci D, Framboas M, Haouet N (2017) Contribution of street food on dietary acrylamide exposure by youth aged nineteen to thirty in Perugia, Italy. Italian journal of food safety 6. https://doi.org/10.4081/ijfs.2017.6881.
Altunay N, Gürkan R, Orhan U (2016) A preconcentration method for indirect determination of acrylamide from chips, crackers and cereal-based baby foods using flame atomic absorption spectrometry. Talanta 161:143–150. https://doi.org/10.1016/j.talanta.2016.08.053. (PMID: 10.1016/j.talanta.2016.08.053)
Arab M, Sohrabvandi S, Khorshidian N, Mortazavian AM (2019) Combined effects of salt-related variables on qualitative characteristics of probiotic fermented milk. Current Nutrition & Food Science 15:234–242. https://doi.org/10.2174/1573401314666180123151007. (PMID: 10.2174/1573401314666180123151007)
Arab M, Sohrabvandi S, Mortazavian AM, Mohammadi R, Tavirani MR (2012) Reduction of aflatoxin in fermented milks during production and storage. Toxin Reviews 31:44–53. https://doi.org/10.3109/15569543.2012.738350. (PMID: 10.3109/15569543.2012.738350)
Arisseto AP, de Figueiredo Toledo MC, Govaert Y, van Loco J, Fraselle S, Degroodt J-M, Caroba DCR (2009) Contribution of selected foods to acrylamide intake by a population of Brazilian adolescents. LWT-Food Science and Technology 42:207–211. https://doi.org/10.1016/j.lwt.2008.05.024. (PMID: 10.1016/j.lwt.2008.05.024)
Bartkiene E, Bartkevics V, Lele V, Pugajeva I, Zavistanaviciute P, Mickiene R, Zadeike D, Juodeikiene G (2018) A concept of mould spoilage prevention and acrylamide reduction in wheat bread: application of lactobacilli in combination with a cranberry coating. Food Control 91:284–293. https://doi.org/10.1016/j.foodcont.2018.04.019. (PMID: 10.1016/j.foodcont.2018.04.019)
Bartkiene E, Bartkevics V, Pugajeva I, Krungleviciute V, Mayrhofer S, Domig K (2017a) The contribution of P. acidilactici, L. plantarum, and L. curvatus starters and L-(+)-lactic acid to the acrylamide content and quality parameters of mixed rye–wheat bread. LWT 80:43–50. https://doi.org/10.1016/j.lwt.2017.02.005. (PMID: 10.1016/j.lwt.2017.02.005)
Bartkiene E, Bartkevics V, Pugajeva I, Krungleviciute V, Mayrhofer S, Domig K (2017b) Parameters of rye, wheat, barley, and oat sourdoughs fermented with Lactobacillus plantarum LUHS 135 that influence the quality of mixed rye–wheat bread, including acrylamide formation. International Journal of Food Science & Technology 52:1473–1482. https://doi.org/10.1111/ijfs.13412. (PMID: 10.1111/ijfs.13412)
Bartkiene E, Jakobsone I, Juodeikiene G, Vidmantiene D, Pugajeva I, Bartkevics V (2013) Effect of fermented Helianthus tuberosus L. tubers on acrylamide formation and quality properties of wheat bread. LWT-Food Science and Technology 54:414–420. https://doi.org/10.1016/j.lwt.2013.05.015. (PMID: 10.1016/j.lwt.2013.05.015)
Bermudo E, Nunez O, Puignou L, Galceran M (2006) Analysis of acrylamide in food samples by capillary zone electrophoresis. Journal of Chromatography A 1120:199–204. https://doi.org/10.1016/j.chroma.2005.10.074. (PMID: 10.1016/j.chroma.2005.10.074)
Bortolomeazzi R, Munari M, Anese M, Verardo G (2012) Rapid mixed mode solid phase extraction method for the determination of acrylamide in roasted coffee by HPLC–MS/MS. Food chemistry 135:2687–2693. https://doi.org/10.1016/j.foodchem.2012.07.057. (PMID: 10.1016/j.foodchem.2012.07.057)
Boyacı Gündüz CP, Cengiz MF (2015) Acrylamide contents of commonly consumed bread types in Turkey. International journal of food properties 18:833–841. https://doi.org/10.1080/10942912.2013.877028. (PMID: 10.1080/10942912.2013.877028)
Branciari R, Roila R, Ranucci D, Altissimi MS, Mercuri ML, Haouet NM (2019) Estimation of acrylamide exposure in Italian schoolchildren consuming a canteen menu: health concern in three age groups. International journal of food sciences and nutrition:1-10. https://doi.org/10.1080/09637486.2019.1624692 .
Capuano E, Garofalo G, Napolitano A, Zielinski H, Fogliano V (2010) Rye flour extraction rate affects Maillard reaction development, antioxidant activity, and acrylamide formation in bread crisps. Cereal chemistry 87:131–136. https://doi.org/10.1094/CCHEM-87-2-0131. (PMID: 10.1094/CCHEM-87-2-0131)
Castle L, Eriksson S (2005) Analytical methods used to measure acrylamide concentrations in foods. Journal of AOAC international 88:274–284. https://doi.org/10.1093/jaoac/88.1.274. (PMID: 10.1093/jaoac/88.1.274)
Cengiz MF, Gündüz CPB (2013) Acrylamide exposure among Turkish toddlers from selected cereal-based baby food samples. Food and chemical toxicology 60:514–519. https://doi.org/10.1016/j.fct.2013.08.018. (PMID: 10.1016/j.fct.2013.08.018)
Claeys W, Baert K, Mestdagh F, Vercammen J, Daenens P, de Meulenaer B, Maghuin-Rogister G, Huyghebaert A (2010) Assessment of the acrylamide intake of the Belgian population and the effect of mitigation strategies. Food Additives and Contaminants 27:1199–1207. https://doi.org/10.1080/19440049.2010.489577. (PMID: 10.1080/19440049.2010.489577)
Claus A, Carle R, Schieber A (2008a) Acrylamide in cereal products: a review. Journal of Cereal science 47:118–133. https://doi.org/10.1016/j.jcs.2007.06.016. (PMID: 10.1016/j.jcs.2007.06.016)
Claus A, Mongili M, Weisz G, Schieber A, Carle R (2008b) Impact of formulation and technological factors on the acrylamide content of wheat bread and bread rolls. Journal of cereal science 47:546–554. https://doi.org/10.1016/j.jcs.2007.06.011. (PMID: 10.1016/j.jcs.2007.06.011)
Crawford LM, Kahlon TS, Chiu MCM, Wang SC, Friedman M (2019a) Acrylamide content of experimental and commercial flatbreads. Journal of food science 84:659–666. https://doi.org/10.1111/1750-3841.14456. (PMID: 10.1111/1750-3841.14456)
Crawford LM, Kahlon TS, Wang SC, Friedman M (2019b) Acrylamide content of experimental flatbreads prepared from potato, quinoa, and wheat flours with added fruit and vegetable peels and mushroom powders. Foods 8:228. https://doi.org/10.3390/foods8070228. (PMID: 10.3390/foods8070228)
Curtis TY, Halford NG (2016) Reducing the acrylamide-forming potential of wheat. Food and Energy Security 5:153–164. https://doi.org/10.1002/fes3.85. (PMID: 10.1002/fes3.85)
Dastmalchi F, Razavi S (2016) Comparison of the impact of Lactobacillus casei and Lactobacillus rhamnosus on acrylamide reduction in flat and bulk bread. Quality Assurance and Safety of Crops & Foods 8:483–492. https://doi.org/10.3920/QAS2015.0643. (PMID: 10.3920/QAS2015.0643)
Dastmalchi F, Razavi SH, Faraji M, Labbafi M (2016) Effect of Lactobacillus casei-casei and Lactobacillus reuteri on acrylamide formation in flat bread and bread roll. Journal of food science and technology 53:1531–1539. https://doi.org/10.1007/s13197-015-2118-3. (PMID: 10.1007/s13197-015-2118-3)
Diana M, Rafecas M, Quílez J (2014) Free amino acids, acrylamide and biogenic amines in gamma-aminobutyric acid enriched sourdough and commercial breads. Journal of cereal science 60:639–644. https://doi.org/10.1016/j.jcs.2014.06.009. (PMID: 10.1016/j.jcs.2014.06.009)
Dias FFG, dos Santos Aguilar JG, Sato HH (2019) L-Asparaginase from Aspergillus spp.: production based on kinetics, thermal stability and biochemical characterization 3. Biotech 9:289. https://doi.org/10.1007/s13205-019-1814-5.
Dunovská L, Čajka T, Hajšlová J, Holadová K (2006) Direct determination of acrylamide in food by gas chromatography–high-resolution time-of-flight mass spectrometry. Analytica chimica acta 578:234–240. https://doi.org/10.1016/j.aca.2006.07.001. (PMID: 10.1016/j.aca.2006.07.001)
Dybing E, Sanner T (2003) Risk assessment of acrylamide in foods. Toxicological Sciences 75:7–15. https://doi.org/10.1093/toxsci/kfg165. (PMID: 10.1093/toxsci/kfg165)
EFSA Panel on Contaminants in the Food Chain (CONTAM) (2015) Scientific opinion on acrylamide in food. EFSA Journal 13:4104. https://doi.org/10.2903/j.efsa.2015.4104. (PMID: 10.2903/j.efsa.2015.4104)
Elbashir AA, Omar MMA, Ibrahim WAW, Schmitz OJ, Aboul-Enein HY (2014) Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods. Critical reviews in analytical chemistry 44:107–141. https://doi.org/10.1080/10408347.2013.829388. (PMID: 10.1080/10408347.2013.829388)
Eslamizad S, Kobarfard F, Tabib K, Yazdanpanah H, Salamzadeh J (2020) Development of a Sensitive and Rapid Method for Determination of Acrylamide in Bread by LC-MS/MS and Analysis of Real Samples in Iran IR. Iranian Journal of Pharmaceutical Research: IJPR 19:413–423. https://doi.org/10.22037/ijpr.2019.111994.13474.
Eslamizad S, Kobarfard F, Tsitsimpikou C, Tsatsakis A, Tabib K, Yazdanpanah H (2019) Health risk assessment of acrylamide in bread in Iran using LC-MS/MS. Food and chemical toxicology 126:162–168. https://doi.org/10.1016/j.fct.2019.02.019. (PMID: 10.1016/j.fct.2019.02.019)
Faraji M, Hamdamali M, Aryanasab F, Shabanian M (2018) 2-Naphthalenthiol derivatization followed by dispersive liquid–liquid microextraction as an efficient and sensitive method for determination of acrylamide in bread and biscuit samples using high-performance liquid chromatography. Journal of Chromatography A 1558:14–20. https://doi.org/10.1016/j.chroma.2018.05.021. (PMID: 10.1016/j.chroma.2018.05.021)
Fernandes CL, Carvalho DO, Guido LF (2019) Determination of acrylamide in biscuits by high-resolution orbitrap mass spectrometry: a novel application. Foods 8:597. https://doi.org/10.3390/foods8120597. (PMID: 10.3390/foods8120597)
Fink M, Andersson R, Rosén J, Åman P (2006) Effect of added asparagine and glycine on acrylamide content in yeast-leavened bread. Cereal chemistry 83:218–222. https://doi.org/10.1094/CC-83-0218. (PMID: 10.1094/CC-83-0218)
Frigon MD, Liu D (2016) Effect of high salinity on yeast activated sludge reactor operation. Water Science and Technology 74:2124–2134. https://doi.org/10.2166/wst.2016.391. (PMID: 10.2166/wst.2016.391)
Fu Z, Yoo MJ, Zhou W, Zhang L, Chen Y, Lu J (2018) Effect of (−)-epigallocatechin gallate (EGCG) extracted from green tea in reducing the formation of acrylamide during the bread baking process. Food Chemistry 242:162–168. https://doi.org/10.1016/j.foodchem.2017.09.050. (PMID: 10.1016/j.foodchem.2017.09.050)
Gökmen V (2015) Acrylamide in food: analysis, content and potential health effects. Academic Press.
Granvogl M, Schieberle P (2006) Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide. Journal of Agricultural and Food Chemistry 54:5933–5938. https://doi.org/10.1021/jf061150h. (PMID: 10.1021/jf061150h)
Hamzalıoğlu A, Mogol BA, Gökmen V (2019) Acrylamide: an overview of the chemistry and occurrence in foods. https://doi.org/10.1016/b978-0-08-100596-5.21817-9.
Hidalgo FJ, Delgado RM, Navarro JL, Zamora R (2010) Asparagine decarboxylation by lipid oxidation products in model systems. Journal of agricultural and food chemistry 58:10512–10517. https://doi.org/10.1021/jf102026c. (PMID: 10.1021/jf102026c)
Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA (2007) A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiology and Prevention Biomarkers 16:2304–2313. https://doi.org/10.1158/1055-9965.epi-07-0581. (PMID: 10.1158/1055-9965.epi-07-0581)
Hu Q, Xu X, Fu Y, Li Y (2015) Rapid methods for detecting acrylamide in thermally processed foods: a review. Food Control 56:135–146. https://doi.org/10.1016/j.foodcont.2015.03.021. (PMID: 10.1016/j.foodcont.2015.03.021)
Jesus S, Delgado I, Rego A, Brandão C, Santos RG, Bordado J, Castanheira I (2018) Determination of acrylamide in Portuguese bread by UPLC-MS/MS: metrological and chemometric tools. ACTA IMEKO 7:96-101. https://doi.org/10.21014/acta_imeko.v7i2.453 .
Jin C, Wu X, Zhang Y (2013) Relationship between antioxidants and acrylamide formation: a review. Food research international 51:611–620. https://doi.org/10.1016/j.foodres.2012.12.047. (PMID: 10.1016/j.foodres.2012.12.047)
Jing Y, Li X, Hu X, Ma Z, Liu L, Ma X (2019) Effect of buckwheat extracts on acrylamide formation and the quality of bread. Journal of the Science of Food and Agriculture. 99:6482–6489. https://doi.org/10.1002/jsfa.9927. (PMID: 10.1002/jsfa.9927)
Jozinović A, Šarkanj B, Ačkar Đ, Panak Balentić J, Šubarić D, Cvetković T, Ranilović J, Guberac S, Babić J (2019) Simultaneous determination of acrylamide and hydroxymethylfurfural in extruded products by LC-MS/MS method. Molecules 24:1971. https://doi.org/10.3390/molecules24101971. (PMID: 10.3390/molecules24101971)
Kafouris D et al (2018) Determination of acrylamide in food using a UPLC–MS/MS method: results of the official control and dietary exposure assessment in Cyprus Food Additives & Contaminants: Part A 35:1928-1939. https://doi.org/10.1080/19440049.2018.1508893.
Kamankesh M, Nematollahi A, Mohammadi A, Ferdowsi R (2020) Investigation of composition, temperature, and heating time in the formation of acrylamide in snack: central composite design optimization and microextraction coupled with gas chromatography–mass spectrometry. Food Analytical Methods:1-10. https://doi.org/10.1007/s12161-020-01849-6.
Kataoka H, Ishizaki A, Nonaka Y, Saito K (2009) Developments and applications of capillary microextraction techniques: a review. Analytica Chimica Acta 655:8–29. https://doi.org/10.1016/j.aca.2009.09.032. (PMID: 10.1016/j.aca.2009.09.032)
Katsaiti T, Granby K (2016) Mitigation of the processing contaminant acrylamide in bread by reducing asparagine in the bread dough. Food Additives & Contaminants: Part A 33:1402–1410. https://doi.org/10.1080/19440049.2016.1217068. (PMID: 10.1080/19440049.2016.1217068)
Keramat J, LeBail A, Prost C, Jafari M (2011a) Acrylamide in baking products: a review article. Food and Bioprocess Technology 4:530–543. https://doi.org/10.1007/s11947-010-0495-1. (PMID: 10.1007/s11947-010-0495-1)
Keramat J, LeBail A, Prost C, Soltanizadeh N (2011b) Acrylamide in foods: chemistry and analysis. A review. Food and bioprocess technology 4:340–363. https://doi.org/10.1007/s11947-010-0470-x. (PMID: 10.1007/s11947-010-0470-x)
Khorshidian N, Yousefi M, Shadnoush M, Siadat SD, Mohammadi M, Mortazavian AM (2020) Using probiotics for mitigation of acrylamide in food products: a mini review. Current Opinion in Food Science 32:67–75. https://doi.org/10.1016/j.cofs.2020.01.011. (PMID: 10.1016/j.cofs.2020.01.011)
Kim SH, Hwang J-H, Lee K-G (2011) Analysis of acrylamide using gas chromatography-nitrogen phosphorus detector (GC-NPD). Food Science and Biotechnology 20:835–839. https://doi.org/10.1007/s10068-011-0116-4. (PMID: 10.1007/s10068-011-0116-4)
Komprda T, Pridal A, Mikulíková R, Svoboda Z, Cwiková O, Nedomová Š, Sýkora V (2017) A combination of additives can synergically decrease acrylamide content in gingerbread without compromising sensory quality. Journal of the Science of Food and Agriculture 97:889–895. https://doi.org/10.1002/jsfa.7811. (PMID: 10.1002/jsfa.7811)
Konings E et al (2003) Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food and Chemical Toxicology 41:1569–1579. https://doi.org/10.1016/S0278-6915(03)00187-X. (PMID: 10.1016/S0278-6915(03)00187-X)
Kruchina-Bogdanov I, Nilova L, Malyutenkova S, Naumenko N. Using capillary electrophoresis to determine acrylamide in bakery products. In: International scientific and practical conference "Agro-SMART-Smart solutions for agriculture" (Agro-SMART 2018), 2018. Atlantis Press.
Ledl F, Schleicher E (1990) New aspects of the Maillard reaction in foods and in the human body. Angewandte Chemie International Edition in English 29:565–594. https://doi.org/10.1002/anie.199005653. (PMID: 10.1002/anie.199005653)
Lee K-J, Lee GH, Kim HS, Oh MS, Chu S, Hwang IJ, Lee JY, Choi A, Kim CI, Park HM (2015) Determination of heterocyclic amines and acrylamide in agricultural products with liquid chromatography-tandem mass spectrometry. Toxicological Research 31:255–264. https://doi.org/10.5487/TR.2015.31.3.255. (PMID: 10.5487/TR.2015.31.3.255)
Lee M-R, Chang L-Y, Dou J (2007) Determination of acrylamide in food by solid-phase microextraction coupled to gas chromatography–positive chemical ionization tandem mass spectrometry. Analytica Chimica. Acta 582:19-23. https://doi.org/10.1016/j.aca.2006.08.042 .
Li J, Zuo J, Qiao X, Zhang Y, Xu Z (2016) Effect of garlic powder on acrylamide formation in a low-moisture model system and bread baking. Journal of the Science of Food and Agriculture 96:893–899. https://doi.org/10.1002/jsfa.7162. (PMID: 10.1002/jsfa.7162)
Lineback DR, Coughlin JR, Stadler RH (2012) Acrylamide in foods: a review of the science and future considerations. Annual review of food science and technology 3:15–35. https://doi.org/10.1146/annurev-food-022811-101114. (PMID: 10.1146/annurev-food-022811-101114)
Lineback DR, Jones JM (2011) Acrylamide in foods: data and more questions. Nutrition Today 46:216–223. https://doi.org/10.1097/NT.0b013e3182303fdb. (PMID: 10.1097/NT.0b013e3182303fdb)
Liu J, Liu X, Man Y, Liu Y (2018) Reduction of acrylamide content in bread crust by starch coating. Journal of the Science of Food and Agriculture 98:336–345. https://doi.org/10.1002/jsfa.8476. (PMID: 10.1002/jsfa.8476)
Liu S-C, Yang D-J, Jin S-Y, Hsu C-H, Chen S-L (2008) Kinetics of color development, pH decreasing, and anti-oxidative activity reduction of Maillard reaction in galactose/glycine model systems. Food Chemistry 108:533–541. https://doi.org/10.1016/j.foodchem.2007.11.006. (PMID: 10.1016/j.foodchem.2007.11.006)
Liyanage DWK (2019) Effects of nitrogen treatments and processing conditions on acrylamide formation in potato chips or French fries. University of Lethbridge, Department of Biological Sciences, Lethbridge, Alta.
Longhua X, Limin Z, Xuguang Q, Zhixiang X, Jiaming S (2012) Determination of trace acrylamide in potato chip and bread crust based on SPE and HPLC. Chromatographia 75:269–274. https://doi.org/10.1007/s10337-012-2195-7. (PMID: 10.1007/s10337-012-2195-7)
Marconi O, Bravi E, Perretti G, Martini R, Montanari L, Fantozzi P (2010) Acrylamide risk in food products: the shortbread case study. Analytical Methods 2:1686–1691. https://doi.org/10.1039/C0AY00191K. (PMID: 10.1039/C0AY00191K)
Meybodi NM, Mirmoghtadaie L, Sheidaei Z, Mortazavian AM (2019a) Wheat bread: potential approach to fortify its lysine content. Current Nutrition & Food Science 15:630–637. https://doi.org/10.2174/1573401315666190228125241. (PMID: 10.2174/1573401315666190228125241)
Meybodi NM, Mortazavian AM, Mirmoghtadaie L, Hosseini SM, Yasini SA, Azizi MH, Nodoushan SM (2019b) Effects of microbial transglutaminase and fermentation type on improvement of lysine availability in wheat bread: a response surface methodology. Applied Food Biotechnology 6:151–164. https://doi.org/10.22037/afb.v6i3.24359. (PMID: 10.22037/afb.v6i3.24359)
Mildner-Szkudlarz S, Różańska M, Piechowska P, Waśkiewicz A, Zawirska-Wojtasiak R (2019) Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chemistry:125008. https://doi.org/10.1016/j.foodchem.2019.125008 .
Mills C, Tlustos C, Evans R, Matthews W (2008) Dietary acrylamide exposure estimates for the United Kingdom and Ireland: comparison between semiprobabilistic and probabilistic exposure models. Journal of agricultural and food chemistry 56:6039–6045. https://doi.org/10.1021/jf073050x. (PMID: 10.1021/jf073050x)
Mojska H, Gielecińska I, Szponar L, Ołtarzewski M (2010) Estimation of the dietary acrylamide exposure of the Polish population. Food and Chemical Toxicology 48:2090–2096. https://doi.org/10.1016/j.fct.2010.05.009. (PMID: 10.1016/j.fct.2010.05.009)
Mollakhalili Meybodi N, Mohammadifar M, Feizollahi E (2015) Gluten-free bread quality: a review of the improving factors. Journal of food quality and hazards control 2:81–85.
Motaghi M, Seyedain AM, Honarvar M, Mehrabani M, Baghizadeh A (2012) Determination of acrylamide in selected types of Iranian breads by SPME technique. Journal of Food Biosciences and Technology 2:57–64.
Mousavi Khaneghah A, Fakhri Y, Nematollahi A, Seilani F, Vasseghian Y (2020) The concentration of acrylamide in different food products: a global systematic review, meta-analysis, and meta-regression. Food Reviews International:1-19. https://doi.org/10.1080/87559129.2020.1791175 .
Mucci LA, Wilson KM (2008) Acrylamide intake through diet and human cancer risk. Journal of agricultural and food chemistry 56:6013–6019. https://doi.org/10.1021/jf703747b. (PMID: 10.1021/jf703747b)
Nachi I, Fhoula I, Smida I, Ben Taher I, Chouaibi M, Jaunbergs J, Bartkevics V, Hassouna M (2018) Assessment of lactic acid bacteria application for the reduction of acrylamide formation in bread. LWT 92:435–441. https://doi.org/10.1016/j.lwt.2018.02.061. (PMID: 10.1016/j.lwt.2018.02.061)
Namir M, Rabie MA, Rabie NA, Ramadan MF (2018) Optimizing the addition of functional plant extracts and baking conditions to develop acrylamide-free pita bread. Journal of Food Protection 81:1696–1706. https://doi.org/10.4315/0362-028X.JFP-18-150. (PMID: 10.4315/0362-028X.JFP-18-150)
Nasiri Esfahani B, Kadivar M, Shahedi M, Soleimanian-Zad S (2017) Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Additives & Contaminants: Part A 34:1904–1914. https://doi.org/10.1080/19440049.2017.1378444. (PMID: 10.1080/19440049.2017.1378444)
Negoiță M, Catană M, Iorga E, Catană L, Adascalului A, Belc N (2014) Determination of acrylamide in bread by gas chromatography–tandem mass spectrometry. Romanian Biotechnological Letters 19:9561.
Negoiță M, Culețu A (2016) Application of an accurate and validated method for identification and quantification of acrylamide in bread, biscuits and other bakery products using GC-MS/MS system. Journal of the Brazilian Chemical Society 27:1782–1791. https://doi.org/10.5935/0103-5053.20160059. (PMID: 10.5935/0103-5053.20160059)
Nematollahi A, Kamankesh M, Hosseini H, Ghasemi J, Hosseini-Esfahani F, Mohammadi A (2019) Investigation and determination of acrylamide in the main group of cereal products using advanced microextraction method coupled with gas chromatography-mass spectrometry. Journal of Cereal Science 87:157–164. https://doi.org/10.1016/j.jcs.2019.03.019. (PMID: 10.1016/j.jcs.2019.03.019)
Nematollahi A, Kamankesh M, Hosseini H, Ghasemi J, Hosseini-Esfahani F, Mohammadi A, Khaneghah AM (2020a) Acrylamide content of collected food products from Tehran’s market: a risk assessment study. Environmental Science and Pollution Research International. 27:30558–30570. https://doi.org/10.1007/s11356-020-09323-w. (PMID: 10.1007/s11356-020-09323-w)
Nematollahi A, Kamankesh M, Hosseini H, Hadian Z, Ghasemi J, Mohammadi A (2020b) Investigation and determination of acrylamide in 24 types of roasted nuts and seeds using microextraction method coupled with gas chromatography–mass spectrometry: central composite design. Journal of Food Measurement and Characterization:1-12. https://doi.org/10.1007/s11694-020-00373-9 .
Norouzi E, Kamankesh M, Mohammadi A, Attaran A (2018) Acrylamide in bread samples: determining using ultrasonic-assisted extraction and microextraction method followed by gas chromatography-mass spectrometry. Journal of cereal science 79:1–5. https://doi.org/10.1016/j.jcs.2017.09.011. (PMID: 10.1016/j.jcs.2017.09.011)
Oracz J, Nebesny E, Żyżelewicz D (2011) New trends in quantification of acrylamide in food products. Talanta 86:23–34. https://doi.org/10.1016/j.talanta.2011.08.066. (PMID: 10.1016/j.talanta.2011.08.066)
Oroian M, Amariei S, Gutt G (2015) Acrylamide in Romanian food using HPLC-UV and a health risk assessment. Food Additives & Contaminants: Part B 8:136–141. https://doi.org/10.1080/19393210.2015.1010240. (PMID: 10.1080/19393210.2015.1010240)
Pan M, Liu K, Yang J, Hong L, Xie X, Wang S (2020) Review of research into the determination of acrylamide in foods. Foods 9:524. https://doi.org/10.3390/foods9040524. (PMID: 10.3390/foods9040524)
Pedreschi F, Granby K, Risum J (2010) Acrylamide mitigation in potato chips by using NaCl. Food and Bioprocess Technology 3:917–921. https://doi.org/10.1007/s11947-010-0349-x. (PMID: 10.1007/s11947-010-0349-x)
Pedreschi F, Mariotti MS, Granby K (2014) Current issues in dietary acrylamide: formation, mitigation and risk assessment. Journal of the Science of Food and Agriculture 94:9–20. https://doi.org/10.1002/jsfa.6349. (PMID: 10.1002/jsfa.6349)
Przygodzka M, Piskula MK, Kukurová K, Ciesarová Z, Bednarikova A, Zieliński H (2015) Factors influencing acrylamide formation in rye, wheat and spelt breads. Journal of cereal science 65:96–102. https://doi.org/10.1016/j.jcs.2015.06.011. (PMID: 10.1016/j.jcs.2015.06.011)
Pundir CS, Yadav N, Chhillar AK (2019) Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors: a review. Trends in food science & technology. 85:211–225. https://doi.org/10.1016/j.tifs.2019.01.003. (PMID: 10.1016/j.tifs.2019.01.003)
Ray M, Adhikari S, Kundu P (2019) Isolation and characterization of microbial asparaginase to mitigate acrylamide formation in food. Advances in plant & microbial biotechnology. Springer, In, pp 95–100.
Roszko MŁ, Szczepańska M, Szymczyk K, Rzepkowska M (2019) Dietary risk evaluation of acrylamide intake with bread in Poland, determined by two comparable cleanup procedures. Food Additives & Contaminants: Part B:1-9. https://doi.org/10.1080/19393210.2019.1666924.
Rufián-Henares JA, Morales FJ (2006) Determination of acrylamide in potato chips by a reversed-phase LC–MS method based on a stable isotope dilution assay. Food Chemistry 97:555–562. https://doi.org/10.1016/j.foodchem.2005.06.007. (PMID: 10.1016/j.foodchem.2005.06.007)
Sadd PA, Hamlet CG, Liang L (2008) Effectiveness of methods for reducing acrylamide in bakery products. Journal of agricultural and food chemistry 56:6154–6161. https://doi.org/10.1021/jf7037482. (PMID: 10.1021/jf7037482)
Shahrbabki PE, Hajimohammadi B, Shoeibi S, Elmi M, Yousefzadeh A, Conti GO, Ferrante M, Amirahmadi M, Fakhri Y, Mousavi Khaneghah A (2018) Probabilistic non-carcinogenic and carcinogenic risk assessments (Monte Carlo simulation method) of the measured acrylamide content in Tah-dig using QuEChERS extraction and UHPLC-MS/MS. Food and chemical toxicology 118:361–370. https://doi.org/10.1016/j.fct.2018.05.038. (PMID: 10.1016/j.fct.2018.05.038)
Shen Y, Chen G, Li Y (2019) Effect of added sugars and amino acids on acrylamide formation in white pan bread. Cereal Chemistry 96:545–553. https://doi.org/10.1002/cche.10154. (PMID: 10.1002/cche.10154)
Sirot V, Hommet F, Tard A, Leblanc J-C (2012) Dietary acrylamide exposure of the French population: results of the second French Total Diet Study. Food and Chemical Toxicology 50:889–894. https://doi.org/10.1016/j.fct.2011.12.033. (PMID: 10.1016/j.fct.2011.12.033)
Stockmann F, Weber EA, Mast B, Schreiter P, Merkt N, Claupein W, Graeff-Hönninger S (2018) Evaluation of asparagine concentration as an indicator of the acrylamide formation in cereals grown under organic farming conditions. Agronomy 8:294. https://doi.org/10.3390/agronomy8120294. (PMID: 10.3390/agronomy8120294)
Stockmann F, Weber EA, Mast B, Schreiter P, Merkt N, Claupein W, Graeff-Hönninger S (2019) Acrylamide-formation potential of cereals: what role does the agronomic management system play? Agronomy 9:584. https://doi.org/10.3390/agronomy9100584. (PMID: 10.3390/agronomy9100584)
Sun S-y, Fang Y, Y-m X (2012) A facile detection of acrylamide in starchy food by using a solid extraction-GC strategy. Food Control 26:220–222. https://doi.org/10.1016/j.foodcont.2012.01.028. (PMID: 10.1016/j.foodcont.2012.01.028)
Svensson K, Abramsson L, Becker W, Glynn A, Hellenäs K-E, Lind Y, Rosen J (2003) Dietary intake of acrylamide in Sweden. Food and Chemical Toxicology 41:1581–1586. https://doi.org/10.1016/S0278-6915(03)00188-1. (PMID: 10.1016/S0278-6915(03)00188-1)
Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of agricultural and food chemistry 50:4998–5006. https://doi.org/10.1021/jf020302f. (PMID: 10.1021/jf020302f)
Tekkeli SEK, Önal C, Önal A (2012) A review of current methods for the determination of acrylamide in food products. Food Analytical Methods 5:29–39. https://doi.org/10.1007/s12161-011-9277-2. (PMID: 10.1007/s12161-011-9277-2)
Tuncel NB, Yılmaz N, Şener E (2010) The effect of pea (Pisum sativum L.)-originated asparaginase on acrylamide formation in certain bread types. International journal of food science & technology 45:2470–2476. https://doi.org/10.1111/j.1365-2621.2010.02370.x. (PMID: 10.1111/j.1365-2621.2010.02370.x)
US EPA. (2010). Toxicological Review of Acrylamide (CAS No. 79-06-1) In Support of Summary Information on the Integrated Risk Information System (IRIS). EPA/635/R-07/009F.
Vala AK, Sachaniya B, Dudhagara D, Panseriya HZ, Gosai H, Rawal R, Dave BP (2018) Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste. International journal of biological macromolecules 108:41–46. https://doi.org/10.1016/j.ijbiomac.2017.11.114. (PMID: 10.1016/j.ijbiomac.2017.11.114)
Viiard E, Bessmeltseva M, Simm J, Talve T, Aaspõllu A, Paalme T, Sarand I (2016) Diversity and stability of lactic acid bacteria in rye sourdoughs of four bakeries with different propagation parameters. PloS one 11:e0148325. https://doi.org/10.1371/journal.pone.0148325. (PMID: 10.1371/journal.pone.0148325)
Virk-Baker MK, Nagy TR, Barnes S, Groopman J (2014) Dietary acrylamide and human cancer: a systematic review of literature. Nutrition and cancer 66:774–790. https://doi.org/10.1080/01635581.2014.916323. (PMID: 10.1080/01635581.2014.916323)
Wang H, Lee AW, Shuang S, Choi MM (2008) SPE/HPLC/UV studies on acrylamide in deep-fried flour-based indigenous Chinese foods. Microchemical Journal 89:90–97. https://doi.org/10.1016/j.microc.2007.12.006. (PMID: 10.1016/j.microc.2007.12.006)
Wang S, Yu J, Xin Q, Wang S, Copeland L (2017) Effects of starch damage and yeast fermentation on acrylamide formation in bread. Food Control 73:230–236. https://doi.org/10.1016/j.foodcont.2016.08.002. (PMID: 10.1016/j.foodcont.2016.08.002)
Weißhaar R (2004) Acrylamide in heated potato products—analytics and formation routes. European Journal of Lipid Science and Technology 106:786–792. https://doi.org/10.1002/ejlt.200400988. (PMID: 10.1002/ejlt.200400988)
Wenzl T, De La Calle MB, Anklam E (2003) Analytical methods for the determination of acrylamide in food products: a review. Food Additives and Contaminants 20:885–902. https://doi.org/10.1080/02652030310001605051. (PMID: 10.1080/02652030310001605051)
Wenzl T, Karasek L, Rosen J, Hellenaes K-E, Crews C, Castle L, Anklam E (2006) Collaborative trial validation study of two methods, one based on high performance liquid chromatography–tandem mass spectrometry and on gas chromatography–mass spectrometry for the determination of acrylamide in bakery and potato products. Journal of Chromatography A 1132:211–218. https://doi.org/10.1016/j.chroma.2006.07.007. (PMID: 10.1016/j.chroma.2006.07.007)
Wyka J, Tajner-Czopek A, Broniecka A, Piotrowska E, Bronkowska M, Biernat J (2015) Estimation of dietary exposure to acrylamide of Polish teenagers from an urban environment. Food and Chemical Toxicology 75:151–155. https://doi.org/10.1016/j.fct.2014.11.003. (PMID: 10.1016/j.fct.2014.11.003)
Xu F, Oruna-Concha M-J, Elmore JS (2016) The use of asparaginase to reduce acrylamide levels in cooked food. Food chemistry 210:163–171. https://doi.org/10.1016/j.foodchem.2016.04.105. (PMID: 10.1016/j.foodchem.2016.04.105)
Xu Y, Cui B, Ran R, Liu Y, Chen H, Kai G, Shi J (2014) Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food and Chemical Toxicology 69:1–12. https://doi.org/10.1016/j.fct.2014.03.037. (PMID: 10.1016/j.fct.2014.03.037)
Yousefi M, Shariatifar N, Tajabadi Ebrahimi M, Mortazavian AM, Mohammadi A, Khorshidian N, Arab M, Hosseini H (2019) In vitro removal of polycyclic aromatic hydrocarbons by lactic acid bacteria. Journal of applied microbiology 126:954–964. https://doi.org/10.1111/jam.14163. (PMID: 10.1111/jam.14163)
Yousefi M, Shemshadi G, Khorshidian N, Ghasemzadeh-Mohammadi V, Fakhri Y, Hosseini H, Khaneghah AM (2018) Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: a risk assessment study. Food and Chemical Toxicology 118:480–489. https://doi.org/10.1016/j.fct.2018.05.063. (PMID: 10.1016/j.fct.2018.05.063)
Yusà V, Quintas G, Pardo O, Martí P, Pastor A (2006) Determination of acrylamide in foods by pressurized fluid extraction and liquid chromatography-tandem mass spectrometry used for a survey of Spanish cereal-based foods. Food additives and contaminants 23:237–244. https://doi.org/10.1080/02652030500415678. (PMID: 10.1080/02652030500415678)
Zajac J, Bojar I, Helbin J, Kolarzyk E, Potocki A, Strzemecka J, Owoc A (2013) Dietary acrylamide exposure in chosen population of South Poland. Annals of Agricultural and Environmental Medicine 20.
Zhang Y, Dong Y, Ren Y, Zhang Y (2006) Rapid determination of acrylamide contaminant in conventional fried foods by gas chromatography with electron capture detector. Journal of Chromatography A 1116:209–216. https://doi.org/10.1016/j.chroma.2006.03.042. (PMID: 10.1016/j.chroma.2006.03.042)
Zhang Y, Ren Y, Zhang Y (2009) New research developments on acrylamide: analytical chemistry, formation mechanism, and mitigation recipes. Chemical reviews 109:4375–4397. https://doi.org/10.1021/cr800318s. (PMID: 10.1021/cr800318s)
Zhang Y, Zhang G, Zhang Y (2005) Occurrence and analytical methods of acrylamide in heat-treated Zhang Y, Zhang G, Zhang Y (2005) Occurrence and analytical methods of acrylamide in heat-treated foods: review and recent developments. Journal of Chromatography A 1075:1–21. https://doi.org/10.1016/j.chroma.2005.03.123. (PMID: 10.1016/j.chroma.2005.03.123)
Zhou X, Fan L-Y, Zhang W, Cao C-X (2007) Separation and determination of acrylamide in potato chips by micellar electrokinetic capillary chromatography. Talanta 71:1541–1545. https://doi.org/10.1016/j.talanta.2006.07.037. (PMID: 10.1016/j.talanta.2006.07.037)
Zhu Y, Li G, Duan Y, Chen S, Zhang C, Li Y (2008) Application of the standard addition method for the determination of acrylamide in heat-processed starchy foods by gas chromatography with electron capture detector. Food chemistry 109:899–908. https://doi.org/10.1016/j.foodchem.2008.01.020. (PMID: 10.1016/j.foodchem.2008.01.020)
Zhu Y, Wang P, Wang F, Zhao M, Hu X, Chen F (2016) The kinetics of the inhibition of acrylamide by glycine in potato model systems. Journal of the Science of Food and Agriculture 96:548–554. https://doi.org/10.1002/jsfa.7122. (PMID: 10.1002/jsfa.7122)
Contributed Indexing:
Keywords: Acrylamide; Bread; Gas chromatography; High-performance liquid chromatography; Maillard; Risk assessment
Substance Nomenclature:
20R035KLCI (Acrylamide)
Entry Date(s):
Date Created: 20210206 Date Completed: 20210322 Latest Revision: 20210322
Update Code:
20240104
DOI:
10.1007/s11356-021-12775-3
PMID:
33548042
Czasopismo naukowe
Acrylamide is a water-soluble toxicant found in high-protein and carbohydrate-containing foods exposed to high temperature like bread as the staple foodstuff. This toxicant is mainly formed via Maillard reaction. The potential adverse effects of acrylamide especially possible carcinogenicity in human through dietary exposure necessitate its monitoring. Regarding the existence of its precursors in wheat bread formulation as well as extreme consumption of bread by most population and diversity of bread types, its acrylamide level needs to be investigated. The indicative value for acrylamide in wheat bread is set at 80 μg/kg. Consequently, its determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS), or capillary electrophoresis can be helpful considering both the risk assessment and quality control aspects. In this respect, methods based on LC-MS/MS show good recovery and within laboratory repeatability with a limit of detection of 3-20 μg/kg and limit of quantification of 10-50 μg/kg which is suitable for the immediate requirements for food product monitoring and calculation of consumer exposure.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies