Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Utility estimations of health states of older Australian women with atrial fibrillation using SF-6D.

Tytuł :
Utility estimations of health states of older Australian women with atrial fibrillation using SF-6D.
Autorzy :
Abbas SS; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia. .
Majeed T; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia.
Weaver N; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia.
Nair BR; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia.
Forder PM; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia.
Byles JE; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia.
Pokaż więcej
Źródło :
Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation [Qual Life Res] 2021 May; Vol. 30 (5), pp. 1457-1466. Date of Electronic Publication: 2021 Feb 07.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Publication: 2005- : Netherlands : Springer Netherlands
Original Publication: Oxford, UK : Rapid Communications of Oxford, Ltd, c1992-
MeSH Terms :
Atrial Fibrillation/*epidemiology
Quality of Life/*psychology
Aged ; Australia ; Female ; Humans ; Longitudinal Studies ; Surveys and Questionnaires ; Women's Health
References :
Lippi, G., Sanchis-Gomar, F., & Cervellin, G. (2020). Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. International Journal of Stroke. https://doi.org/10.1177/1747493019897870 . (PMID: 10.1177/174749301989787032310015)
Chugh, S. S., Havmoeller, R., Narayanan, K., Singh, D., Rienstra, M., Benjamin, E. J., et al. (2014). Worldwide epidemiology of atrial fibrillation. Circulation, 129(8), 837–847. https://doi.org/10.1161/CIRCULATIONAHA.113.005119 . (PMID: 10.1161/CIRCULATIONAHA.113.00511924345399)
Witassek, F., Springer, A., Adam, L., Aeschbacher, S., Beer, J. H., Blum, S., et al. (2019). Health-related quality of life in patients with atrial fibrillation: The role of symptoms, comorbidities, and the type of atrial fibrillation. PloS one, 14(12), e0226730. (PMID: 10.1371/journal.pone.0226730)
Ball, J., Carrington, M. J., McMurray, J. J. V., & Stewart, S. (2013). Atrial fibrillation: Profile and burden of an evolving epidemic in the 21st century. International Journal of Cardiology, 167(5), 1807–1824. https://doi.org/10.1016/j.ijcard.2012.12.093 . (PMID: 10.1016/j.ijcard.2012.12.09323380698)
Stewart, S., Hart, C. L., Hole, D. J., & McMurray, J. J. V. (2002). A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. The American Journal of Medicine, 113(5), 359–364. https://doi.org/10.1016/S0002-9343(02)01236-6 . (PMID: 10.1016/S0002-9343(02)01236-612401529)
Tsadok, M. A., Jackevicius, C. A., Rahme, E., Humphries, K. H., Behlouli, H., & Pilote, L. (2012). Sex differences in stroke risk among older patients with recently diagnosed atrial fibrillation. JAMA, 307(18), 1952–1958. https://doi.org/10.1001/jama.2012.3490 . (PMID: 10.1001/jama.2012.3490)
Volgman, A. S., Manankil, M. F., Mookherjee, D., & Trohman, R. G. (2009). Women with atrial fibrillation: Greater risk, less attention. Gender Medicine, 6(3), 419–432. https://doi.org/10.1016/j.genm.2009.09.008 . (PMID: 10.1016/j.genm.2009.09.00819850238)
Humphries, K. H., Kerr, C. R., Connolly, S. J., Klein, G., Boone, J. A., Green, M., et al. (2001). New-onset atrial fibrillation. Circulation, 103(19), 2365–2370. https://doi.org/10.1161/01.CIR.103.19.2365 . (PMID: 10.1161/01.CIR.103.19.236511352885)
Australian Institute of Health and Welfare. (2019). Australian Burden of Disease Study: impact and causes of illness and death in Australia 2015. Australian Burden of Disease series no. 19. Cat. no. BOD 22. Canberra: AIHW.
Abbas, S. S., Majeed, T., Nair, B. R., Forder, P., Weaver, N., & Byles, J. (2020). Burden of atrial fibrillation and stroke risk among octagenarian and nonagenarian women in Australia. Ann Epidemiol, 44, 31-37.e32. https://doi.org/10.1016/j.annepidem.2020.02.004 . (PMID: 10.1016/j.annepidem.2020.02.00432249009)
Abbas, S. S., Majeed, T., Nair, B. R., Forder, P. M., Biostatistics, M., Weaver, N., et al. (2020). Patterns of medications for atrial fibrillation among older women: Results from the australian longitudinal study on women’s health. Journal of Cardiovascular Pharmacology and Therapeutics. https://doi.org/10.1177/1074248420947278 . (PMID: 10.1177/107424842094727832757782)
Thrall, G., Lane, D., Carroll, D., & Lip, G. Y. H. (2006). quality of life in patients with atrial fibrillation: A systematic review. The American Journal of Medicine, 119(5), 448.e441-448.e419. https://doi.org/10.1016/j.amjmed.2005.10.057 . (PMID: 10.1016/j.amjmed.2005.10.057)
Alex, M. J. G., & Wyrwich, K. W. (2003). Health utility measures and the standard gamble. Academic Emergency Medicine, 10(4), 360–363. (PMID: 10.1111/j.1553-2712.2003.tb01349.x)
Torrance, G. W., Furlong, W., & Feeny, D. (2002). Health utility estimation. Expert Review of Pharmacoeconomics & Outcomes Research, 2(2), 99–108. https://doi.org/10.1586/14737167.2.2.99 . (PMID: 10.1586/14737167.2.2.99)
Badia, X., Arribas, F., Ormaetxe, J. M., Peinado, R., & de los Terreros, M. S. (2007). Development of a questionnaire to measure health-related quality of life (HRQoL) in patients with atrial fibrillation (AF-QoL). Health and Quality of Life Outcomes, 5(1), 37. (PMID: 10.1186/1477-7525-5-37)
Spertus, J., Dorian, P., Bubien, R., Lewis, S., Godejohn, D., Reynolds, M. R., et al. (2011). Development and validation of the Atrial Fibrillation Effect on QualiTy-of-Life (AFEQT) questionnaire in patients with atrial fibrillation. Circulation Arrhythmia and Electrophysiology, 4(1), 15–25. https://doi.org/10.1161/CIRCEP.110.958033 . (PMID: 10.1161/CIRCEP.110.95803321160035)
The EuroQol Group. (1990). EuroQol—a new facility for the measurement of health-related quality of life. Health Policy, 16(3), 199–208. (PMID: 10.1016/0168-8510(90)90421-9)
Feeny, D., Furlong, W., Torrance, G. W., Goldsmith, C. H., Zhu, Z., DePauw, S., et al. (2002). Multiattribute and single-attribute utility functions for the health utilities index mark 3 system. Medical Care, 40(2), 113–128. (PMID: 10.1097/00005650-200202000-00006)
Richardson, J., Khan, M. A., Chen, G., Iezzi, A., & Maxwell, A. (2012). Population norms and Australian profile using the Assessment of Quality of Life (AQoL) 8D utility instrument. Centre for Health Economics Research Paper.
Kaplan, R. M., Bush, J. W., & Berry, C. C. (1976). Health status: Types of validity and the index of well-being. Health Services Research, 11(4), 478. (PMID: 10307001071947)
Fu, S.-N., Dao, M.-C., Wong, C.K.-H., & Yu, W.-C. (2019). SF-6D utility scores of smokers and ex-smokers with or without respiratory symptoms attending primary care clinics. Health and Quality of Life Outcomes, 17(1), 48. (PMID: 10.1186/s12955-019-1115-z)
Kortt, M. A., & Clarke, P. M. (2005). Estimating utility values for health states of overweight and obese individuals using the SF-36. Quality of Life Research, 14(10), 2177–2185. (PMID: 10.1007/s11136-005-8027-6)
McDonough, C. M., Grove, M. R., Tosteson, T. D., Lurie, J. D., Hilibrand, A. S., & Tosteson, A. N. A. (2005). Comparison of EQ-5D, HUI, and SF-36-derived societal health state values among spine patient outcomes research trial (SPORT) participants. Quality of Life Research, 14(5), 1321–1332. https://doi.org/10.1007/s11136-004-5743-2 . (PMID: 10.1007/s11136-004-5743-2160475072782497)
Hawthorne, G., Richardson, J., & Day, N. A. (2001). A comparison of the Assessment of Quality of Life (AQoL) with four other generic utility instruments. Annals of Medicine, 33(5), 358–370. https://doi.org/10.3109/07853890109002090 . (PMID: 10.3109/0785389010900209011491195)
Richardson, J., Iezzi, A., & Khan, M. A. (2015). Why do multi-attribute utility instruments produce different utilities: the relative importance of the descriptive systems, scale and ‘micro-utility’ effects. Quality of Life Research, 24(8), 2045–2053. https://doi.org/10.1007/s11136-015-0926-6 . (PMID: 10.1007/s11136-015-0926-6256366604493939)
Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292. https://doi.org/10.1016/S0167-6296(01)00130-8 . (PMID: 10.1016/S0167-6296(01)00130-811939242)
Norman, R., Church, J., van den Berg, B., & Goodall, S. (2013). Australian health-related quality of life population norms derived from the SF-6D. Australian and New Zealand Journal of Public Health, 37(1), 17–23. https://doi.org/10.1111/1753-6405.12005 . (PMID: 10.1111/1753-6405.1200523379801)
Dobson, A. J., Hockey, R., Brown, W. J., Byles, J. E., Loxton, D. J., McLaughlin, D., et al. (2015). Cohort profile update: Australian longitudinal study on women’s health. International Journal of Epidemiology, 44(5), 1547–1547f. https://doi.org/10.1093/ije/dyv110 . (PMID: 10.1093/ije/dyv11026130741)
Australian Consortium for Classification Development (2017). The International Statistical Classification of Disease and Related Health Problems, Teenth revision, Australian Mofification (ICD-10-AM), Australian Classification of Health Interventions (ACHI) and Asutralian Coding Standards (ACS) - ICD-10-AM-AM/ACHI/ACS. (Tenth Edition ed.): Independent Housing Pricing Authority.
WHO Collaborating Centre for Drug Statistics Methodology ATC/DDD Index. (2019). Retrieved 3 December 3, 2019, from https://www.whocc.no/atc_ddd_index/ .
Li, P., Stuart, E. A., & Allison, D. B. (2015). Multiple imputation: A flexible tool for handling missing data. JAMA, 314(18), 1966–1967. https://doi.org/10.1001/jama.2015.15281 . (PMID: 10.1001/jama.2015.15281265474684638176)
Walters, S. J., & Brazier, J. E. (2003). What is the relationship between the minimally important difference and health state utility values? The case of the SF-6D. Health and Quality of Life Outcomes, 1, 4–4. https://doi.org/10.1186/1477-7525-1-4 . (PMID: 10.1186/1477-7525-1-412737635155547)
Kanesarajah, J., Waller, M., Whitty, J. A., & Mishra, G. D. (2017). The relationship between SF-6D utility scores and lifestyle factors across three life stages: Evidence from the Australian Longitudinal Study on Women’s Health. Quality of Life Research, 26(6), 1507–1519. (PMID: 10.1007/s11136-017-1498-4)
Hagens, V. E., Ranchor, A. V., Van Sonderen, E., Bosker, H. A., Kamp, O., Tijssen, J. G. P., et al. (2004). Effect of rate or rhythm control on quality of life in persistent atrial fibrillation: Results from the Rate Control Versus Electrical Cardioversion (RACE) study. Journal of the American College of Cardiology, 43(2), 241–247. https://doi.org/10.1016/j.jacc.2003.08.037 . (PMID: 10.1016/j.jacc.2003.08.03714736444)
Das, A. K., Willcoxson, P. D., Corrado, O. J., & West, R. M. (2006). The impact of long-term warfarin on the quality of life of elderly people with atrial fibrillation. Age and Ageing, 36(1), 95–97. https://doi.org/10.1093/ageing/afl062 . (PMID: 10.1093/ageing/afl06216799180)
Kooistra, H. A. M., Piersma-Wichers, M., Kluin-Nelemans, H. C., Veeger, N. J. G. M., & Meijer, K. (2016). Impact of vitamin K antagonists on quality of life in a prospective cohort of 807 atrial fibrillation patients. Circulation: Cardiovascular Quality and Outcomes, 9(4), 388–394. https://doi.org/10.1161/CIRCOUTCOMES.115.002612 . (PMID: 10.1161/CIRCOUTCOMES.115.002612)
Australian Institute of Health and Welfare. (2019). Rural & remote health. Canberra: AIHW.
Dobson, A., McLaughlin, D., Vagenas, D., & Wong, K. Y. (2010). Why are death rates higher in rural areas? Evidence from the Australian Longitudinal Study on Women’s Health. Australian and New Zealand Journal of Public Health, 34(6), 624–628. https://doi.org/10.1111/j.1753-6405.2010.00623.x . (PMID: 10.1111/j.1753-6405.2010.00623.x21134067)
Dobson, A., Byles, J., Dolja-Gore, X., Fitzgerald, D., Hockey, R., Loxton, D., et al. (2011). Rural, remote and regional differences in women's health: Findings from the Australian Longitudinal Study on Women's Health. Women's Health Australia.
Byles, J., Mishra, G., Hockey, R., Adane, A., Chan, H.-W., Dolja-Gore, X., et al. (2017). Use, access to, and impact of Medicare services for Australian women: Findings from the Australian Longitudinal Study on Women's Health. Women's Health Australia.
Byles, J., Powers, J., Chojenta, C., & Warner-Smith, P. (2006). Older women in Australia: Ageing in urban, rural and remote environments. Australasian Journal on Ageing, 25(3), 151–157. https://doi.org/10.1111/j.1741-6612.2006.00171.x . (PMID: 10.1111/j.1741-6612.2006.00171.x)
Lucke, J., Russell, A., Tooth, L., Lee, C., Watson, M., Byrne, G., et al. (2008). Few urban–rural differences in older carers’ access to community services. Australian Health Review, 32(4), 684–690. (PMID: 10.1071/AH080684)
Sabouret, P., Depret-Bixio, L., Cotte, F.-E., Marie, P., Bedira, N., & Blin, P. (2014). Sex differences in stroke prevention in atrial fibrillation in French primary care: Results of the AFIGP (Atrial Fibrillation In General Practice) Database. Clinical Research in Cardiology, 103(11), 887–893. https://doi.org/10.1007/s00392-014-0726-y . (PMID: 10.1007/s00392-014-0726-y24830515)
Contributed Indexing :
Keywords: Atrial fibrillation; Health utilities; Linked data; Multiple imputations; Older women; Quality of life
Entry Date(s) :
Date Created: 20210207 Date Completed: 20210517 Latest Revision: 20210517
Update Code :
20210518
DOI :
10.1007/s11136-020-02748-3
PMID :
33550542
Czasopismo naukowe
Purpose: To estimate SF-6D utility scores for older women with atrial fibrillation (AF); calculate and compare mean utility scores for women with AF with various demographic, health behaviours, and clinical characteristics; and develop a multivariable regression model to determine factors associated with SF-6D utility scores.
Methods: This study evaluated N = 1432 women diagnosed with AF from 2000 to 2015 of the old cohort (born 1921-26) of the Australian Longitudinal Study on Women's Health (ALSWH) who remained alive for at least 12 months post first recorded AF diagnosis. Self-reported data on demographics, health behaviours, health conditions, and SF-36 were obtained from the ALSWH surveys, corresponding to within three years of the date of the first record of AF diagnosis. Linked Pharmaceutical Benefits Scheme (PBS) data determined the use of oral anticoagulants and comorbid conditions, included in CHA 2 DS 2 -VA (Congestive heart failure, Hypertension, Age ≥ 75 years, Diabetes, Stroke or TIA, Vascular disease and Age 65-74 years) score calculation, were assessed using state-based hospital admissions data. Utility scores were calculated for every woman from their SF-36 responses using the SF-6D algorithm with Australian population norms. Mean utility scores were then calculated for women with various demographic, health behaviours, and clinical characteristics. Ordinary Least Square (OLS) regression modelling was performed to determine factors associated with these utility scores. Two different scenarios were used for the analysis: (1) complete-case, for women with complete data on all the SF-36 items required to estimate SF-6D (N = 584 women), and (2) Multiple Imputation (MI) for missing data, applied to missing values on SF-36 items (N = 1432 women). MI scenario was included to gauge the potential bias when using complete data only.
Results: The mean health utility was estimated to be 0.638 ± 0.119 for the complete dataset and 0.642 ± 0.120 for the dataset where missing values were handled using MI. Using the MI technique, living in regional and remote areas ([Formula: see text]) and the use of oral anticoagulants ([Formula: see text] were positively associated with health utility compared to living in major cities and no use of anticoagulants, respectively. Difficulty to manage on available income [Formula: see text], no/low physical activity [Formula: see text], disability [Formula: see text], history of stroke ([Formula: see text] and history of arthritis [Formula: see text] were negatively associated with health utility.
Conclusion: This study presents health utility estimates for older women with AF. These estimates can be used in future clinical and economic research. The study also highlights better health utilities for women living in regional and remote areas, which requires further exploration.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies