Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mechanism of the small ATP-independent chaperone Spy is substrate specific.

Tytuł:
Mechanism of the small ATP-independent chaperone Spy is substrate specific.
Autorzy:
Mitra R; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
Gadkari VV; Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
Meinen BA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
van Mierlo CPM; Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.
Ruotolo BT; Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
Bardwell JCA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA. .; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA. .
Źródło:
Nature communications [Nat Commun] 2021 Feb 08; Vol. 12 (1), pp. 851. Date of Electronic Publication: 2021 Feb 08.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Adenosine Triphosphate/*metabolism
Molecular Chaperones/*metabolism
Periplasmic Proteins/*metabolism
Anabaena/metabolism ; Apoproteins/chemistry ; Apoproteins/metabolism ; Azotobacter/metabolism ; Escherichia coli/metabolism ; Flavodoxin/chemistry ; Flavodoxin/metabolism ; Kinetics ; Magnetic Resonance Spectroscopy ; Molecular Conformation ; Mutant Proteins/metabolism ; Periplasmic Proteins/chemistry ; Protein Binding ; Protein Folding ; Substrate Specificity
References:
Methods Enzymol. 2009;454:87-113. (PMID: 19216924)
Nature. 2011 Jul 20;475(7356):324-32. (PMID: 21776078)
J Mol Biol. 2007 Nov 16;374(1):91-105. (PMID: 17928002)
Nat Commun. 2016 Nov 30;7:13673. (PMID: 27901028)
J Mol Biol. 2001 Mar 2;306(4):877-88. (PMID: 11243795)
J Mol Biol. 2010 Jul 23;400(4):922-34. (PMID: 20553732)
Nat Struct Mol Biol. 2016 Jul;23(7):691-7. (PMID: 27239796)
Nat Commun. 2019 Oct 23;10(1):4833. (PMID: 31645566)
J Biol Chem. 2016 Dec 9;291(50):25911-25920. (PMID: 27784783)
J Mol Biol. 2015 Sep 25;427(19):3148-57. (PMID: 26163276)
Elife. 2014;3:e01584. (PMID: 24497545)
FEBS J. 2017 Oct;284(19):3145-3167. (PMID: 28380286)
Cell. 2016 Jul 14;166(2):369-379. (PMID: 27293188)
Nucleic Acids Res. 2018 Apr 6;46(6):3103-3118. (PMID: 29529283)
Protein Sci. 1996 Jul;5(7):1376-88. (PMID: 8819170)
Bioinformatics. 2015 Apr 15;31(8):1325-7. (PMID: 25505092)
Anal Chem. 2020 Dec 1;92(23):15489-15496. (PMID: 33166123)
Proteins. 2001 Jun 1;43(4):476-88. (PMID: 11340663)
Chem Biol. 2015 Feb 19;22(2):186-95. (PMID: 25699602)
Nat Struct Mol Biol. 2011 Mar;18(3):262-9. (PMID: 21317898)
Nat Commun. 2014 Jun 18;5:4180. (PMID: 24939037)
J Biol Chem. 2017 Jul 21;292(29):12010-12017. (PMID: 28620048)
J Biol Chem. 2005 Feb 18;280(7):5281-9. (PMID: 15542604)
Proteomics. 2012 May;12(10):1547-64. (PMID: 22611037)
J Mol Biol. 2004 Nov 12;344(1):239-55. (PMID: 15504414)
Biophys Chem. 2005 Apr 22;114(2-3):181-9. (PMID: 15829351)
Anal Chem. 2019 Feb 19;91(4):3147-3155. (PMID: 30668913)
Trends Biochem Sci. 2012 Mar;37(3):106-17. (PMID: 22177323)
J Biomol NMR. 1995 Nov;6(3):277-93. (PMID: 8520220)
Rapid Commun Mass Spectrom. 2008;22(6):905-8. (PMID: 18293430)
J Mol Biol. 2007 May 18;368(5):1426-37. (PMID: 17400245)
Nature. 2013 Aug 1;500(7460):98-101. (PMID: 23831649)
Anal Chem. 2010 Jun 1;82(11):4648-51. (PMID: 20465224)
Eur Biophys J. 2010 Feb;39(3):405-14. (PMID: 19247646)
Anal Chem. 2019 Jul 2;91(13):8137-8146. (PMID: 31194508)
J Mol Biol. 2008 Oct 3;382(2):467-84. (PMID: 18619461)
J Biol Chem. 2019 Feb 8;294(6):2121-2132. (PMID: 30385502)
Protein Sci. 1998 Nov;7(11):2331-44. (PMID: 9827999)
J Mol Biol. 2006 Jun 9;359(3):813-24. (PMID: 16647718)
Anal Chem. 2017 Sep 5;89(17):9048-9055. (PMID: 28763190)
Nat Struct Mol Biol. 2016 Jan;23(1):53-58. (PMID: 26619265)
Nat Rev Mol Cell Biol. 2019 Nov;20(11):665-680. (PMID: 31253954)
Adv Protein Chem. 1995;47:83-229. (PMID: 8561052)
Cell. 2010 Jul 9;142(1):112-22. (PMID: 20603018)
J Biol Chem. 2008 Oct 10;283(41):27383-27394. (PMID: 18640986)
Sci Adv. 2016 Nov 16;2(11):e1601625. (PMID: 28138538)
Nature. 2016 Sep 8;537(7619):202-206. (PMID: 27501151)
Biochemistry. 2001 Dec 18;40(50):15234-45. (PMID: 11735406)
J Mol Biol. 2006 May 5;358(3):646-53. (PMID: 16563435)
J Biomol NMR. 2001 May;20(1):71-5. (PMID: 11430757)
Cell Mol Life Sci. 2014 Sep;71(17):3311-25. (PMID: 24760129)
J Magn Reson. 2014 Apr;241:74-85. (PMID: 24656082)
Curr Opin Struct Biol. 2018 Feb;48:1-5. (PMID: 28734135)
Anal Chem. 2010 Nov 15;82(22):9557-65. (PMID: 20979392)
Nucleic Acids Res. 2018 Jul 2;46(W1):W315-W322. (PMID: 29893907)
Biochemistry. 2004 Aug 17;43(32):10475-89. (PMID: 15301546)
Protein Sci. 2002 May;11(5):1260-73. (PMID: 11967382)
Grant Information:
United States HHMI Howard Hughes Medical Institute
Substance Nomenclature:
0 (Apoproteins)
0 (Flavodoxin)
0 (Molecular Chaperones)
0 (Mutant Proteins)
0 (Periplasmic Proteins)
0 (apoflavodoxin)
8L70Q75FXE (Adenosine Triphosphate)
Entry Date(s):
Date Created: 20210209 Date Completed: 20210216 Latest Revision: 20231110
Update Code:
20240104
PubMed Central ID:
PMC7870927
DOI:
10.1038/s41467-021-21120-8
PMID:
33558474
Czasopismo naukowe
ATP-independent chaperones are usually considered to be holdases that rapidly bind to non-native states of substrate proteins and prevent their aggregation. These chaperones are thought to release their substrate proteins prior to their folding. Spy is an ATP-independent chaperone that acts as an aggregation inhibiting holdase but does so by allowing its substrate proteins to fold while they remain continuously chaperone bound, thus acting as a foldase as well. The attributes that allow such dual chaperoning behavior are unclear. Here, we used the topologically complex protein apoflavodoxin to show that the outcome of Spy's action is substrate specific and depends on its relative affinity for different folding states. Tighter binding of Spy to partially unfolded states of apoflavodoxin limits the possibility of folding while bound, converting Spy to a holdase chaperone. Our results highlight the central role of the substrate in determining the mechanism of chaperone action.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies