Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Blockade of mTORC1-NOX signaling pathway inhibits TGF-β1-mediated senescence-like structural alterations of the retinal pigment epithelium.

Tytuł:
Blockade of mTORC1-NOX signaling pathway inhibits TGF-β1-mediated senescence-like structural alterations of the retinal pigment epithelium.
Autorzy:
Lee SJ; Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
Kim SJ; Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
Jo DH; Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
Park KS; Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
Kim JH; Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.; Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea.; Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea.
Źródło:
FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2021 Mar; Vol. 35 (3), pp. e21403.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
MeSH Terms:
Mechanistic Target of Rapamycin Complex 1/*physiology
NADPH Oxidases/*physiology
Retinal Pigment Epithelium/*pathology
Transforming Growth Factor beta1/*physiology
Animals ; Cells, Cultured ; Cellular Senescence ; Epithelial-Mesenchymal Transition ; Intravitreal Injections ; Macular Degeneration/drug therapy ; Macular Degeneration/metabolism ; Male ; Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors ; Mice ; Mice, Inbred C57BL ; NADPH Oxidases/antagonists & inhibitors ; Pyrazolones/pharmacology ; Pyridones/pharmacology ; Reactive Oxygen Species/metabolism ; Retinal Pigment Epithelium/physiology ; Signal Transduction/physiology
References:
Bonilha VL. Age and disease-related structural changes in the retinal pigment epithelium. Clin Ophthalmol. 2008;2(2):413-424. https://doi.org/10.2147/opth.s2151.
Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845-881. https://doi.org/10.1152/physrev.00021.2004.
Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol. 1996;121(2):181-189. https://doi.org/10.1016/s0002-9394(14)70583-5.
Bruban J, Glotin AL, Dinet V, et al. Amyloid-beta(1-42) alters structure and function of retinal pigmented epithelial cells. Aging Cell. 2009;8(2):162-177. https://doi.org/10.1111/j.1474-9726.2009.00456.x.
Ding J-D, Johnson LV, Herrmann R, et al. Anti-amyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration. Proc Natl Acad Sci U S A. 2011;108(28):E279-E287. https://doi.org/10.1073/pnas.1100901108.
Müller C, Charniga C, Temple S, Finnemann SC. Quantified F-actin morphology is predictive of phagocytic capacity of stem cell-derived retinal pigment epithelium. Stem Cell Reports. 2018;10(3):1075-1087. https://doi.org/10.1016/j.stemcr.2018.01.017.
Bhatia SK, Rashid A, Chrenek MA, et al. Analysis of RPE morphometry in human eyes. Mol Vis. 2016;22:898-916.
Tarau IS, Berlin A, Curcio CA, Ach T. The cytoskeleton of the retinal pigment epithelium: from normal aging to age-related macular degeneration. Int J Mol Sci. 2019;20(14):3578. https://doi.org/10.3390/ijms20143578.
Chen M, Rajapakse D, Fraczek M, Luo C, Forrester JV, Xu H. Retinal pigment epithelial cell multinucleation in the aging eye-a mechanism to repair damage and maintain homoeostasis. Aging Cell. 2016;15(3):436-445. https://doi.org/10.1111/acel.12447.
Radeke MJ, Radeke CM, Shih Y-H, et al. Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration. Genome Med. 2015;7(1):58. https://doi.org/10.1186/s13073-015-0183-x.
Santos F, Moreira C, Nóbrega-Pereira S, Bernardes de Jesus B. New insights into the role of epithelial⁻mesenchymal transition during aging. Int J Mol Sci. 2019;20(4):891. https://doi.org/10.3390/ijms20040891.
Tominaga K, Suzuki HI. TGF-β signaling in cellular senescence and aging-related pathology. Int J Mol Sci. 2019;20(20):5002. https://doi.org/10.3390/ijms20205002.
Papageorgis P. Complex interplay between aging and cancer: role of TGF-β signaling. Crit Rev Oncog. 2017;22(3-4):313-321. https://doi.org/10.1615/CritRevOncog.2017025134.
Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology. 2010;52(3):966-974. https://doi.org/10.1002/hep.23769.
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The regulation of NFE2L2 (NRF2) signalling and epithelial-to-mesenchymal transition in age-related macular degeneration pathology. Int J Mol Sci. 2019;20(22):5800. https://doi.org/10.3390/ijms20225800.
Zhou MI, Geathers JS, Grillo SL, et al. Role of epithelial-mesenchymal transition in retinal pigment epithelium dysfunction. Front Cell Dev Biol. 2020;8:501. https://doi.org/10.3389/fcell.2020.00501.
Shu DY, Butcher E, Saint-Geniez M. EMT and EndMT: emerging roles in age-related macular degeneration. Int J Mol Sci. 2020;21(12):4271. https://doi.org/10.3390/ijms21124271.
Kimura K, Orita T, Liu Y, et al. Attenuation of EMT in RPE cells and subretinal fibrosis by an RAR-γ agonist. J Mol Med. 2015;93(7):749-758. https://doi.org/10.1007/s00109-015-1289-8.
Wu D, Kanda A, Liu Y, Kase S, Noda K, Ishida S. Galectin-1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelial-mesenchymal transition. FASEB J. 2019;33(2):2498-2513. https://doi.org/10.1096/fj.201801227R.
Yang J, Li J, Wang Q, Xing Y, Tan Z, Kang Q. Novel NADPH oxidase inhibitor VAS2870 suppresses TGF-β-dependent epithelial-to-mesenchymal transition in retinal pigment epithelial cells. Int J Mol Med. 2018;42(1):123-130. https://doi.org/10.3892/ijmm.2018.3612.
Choi K, Lee K, Ryu SW, Im M, Kook KH, Choi C. Pirfenidone inhibits transforming growth factor-β1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19. Mol Vis. 2012;18:1010-1020.
Matoba R, Morizane Y, Shiode Y, et al. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells. PLoS ONE. 2017;12(7):e0181481. https://doi.org/10.1371/journal.pone.0181481.
Teixeira G, Szyndralewiez C, Molango S, et al. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br J Pharmacol. 2017;174(12):1647-1669. https://doi.org/10.1111/bph.13532.
Antikainen H, Driscoll M, Haspel G, Dobrowolski R. TOR-mediated regulation of metabolism in aging. Aging Cell. 2017;16(6):1219-1233. https://doi.org/10.1111/acel.12689.
Cichon MA, Radisky DC. ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail. Oncotarget. 2014;5(9):2827-2838. https://doi.org/10.18632/oncotarget.1940.
Kim SJ, Kim YS, Kim JH, et al. Activation of ERK1/2-mTORC1-NOX4 mediates TGF-β1-induced epithelial-mesenchymal transition and fibrosis in retinal pigment epithelial cells. Biochem Biophys Res Commun. 2020;529(3):747-752. https://doi.org/10.1016/j.bbrc.2020.06.034.
Das R, Xu S, Nguyen TT, et al. Transforming growth factor β1-induced apoptosis in podocytes via the extracellular signal-regulated kinase-mammalian target of rapamycin complex 1-NADPH oxidase 4 axis. J Biol Chem. 2015;290(52):30830-30842. https://doi.org/10.1074/jbc.M115.703116.
Das R, Kim SJ, Nguyen NT, Kwon HJ, Cha SK, Park KS. Inhibition of the ERK1/2-mTORC1 axis ameliorates proteinuria and the fibrogenic action of transforming growth factor-β in Adriamycin-induced glomerulosclerosis. Kidney Int. 2019;96(4):927-941. https://doi.org/10.1016/j.kint.2019.05.006.
Golestaneh N, Chu Y, Xiao YY, Stoleru GL, Theos AC. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis. 2017;8(1):e2537. https://doi.org/10.1038/cddis.2016.453.
Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye. 2001;15(Pt 3):384-389. https://doi.org/10.1038/eye.2001.141.
Ghosh S, Shang P, Terasaki H, et al. A role for βA3/A1-crystallin in type 2 EMT of RPE cells occurring in dry age-related macular degeneration. Invest Ophthalmol Vis Sci. 2018;59(4):Amd104-Amd113. https://doi.org/10.1167/iovs.18-24132.
Handa JT. How does the macula protect itself from oxidative stress? Mol Aspects Med. 2012;33(4):418-435. https://doi.org/10.1016/j.mam.2012.03.006.
Roehlecke C, Schumann U, Ader M, et al. Stress reaction in outer segments of photoreceptors after blue light irradiation. PLoS ONE. 2013;8(9):e71570. https://doi.org/10.1371/journal.pone.0071570.
Hirsch L, Nazari H, Sreekumar PG, et al. TGF-β2 secretion from RPE decreases with polarization and becomes apically oriented. Cytokine. 2015;71(2):394-396. https://doi.org/10.1016/j.cyto.2014.11.014.
Yu B, Xu P, Zhao Z, Cai J, Sternberg P, Chen Y. Subcellular distribution and activity of mechanistic target of rapamycin in aged retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2014;55(12):8638-8650. https://doi.org/10.1167/iovs.14-14758.
Huang J, Gu S, Chen M, et al. Abnormal mTORC1 signaling leads to retinal pigment epithelium degeneration. Theranostics. 2019;9(4):1170-1180. https://doi.org/10.7150/thno.26281.
Hindupur SK, González A, Hall MN. The opposing actions of target of rapamycin and AMP-activated protein kinase in cell growth control. Cold Spring Harb Perspect Biol. 2015;7(8):a019141. https://doi.org/10.1101/cshperspect.a019141.
Chen K-H, Hsu H-H, Lee C-C, et al. The AMPK agonist AICAR inhibits TGF-β1 induced activation of kidney myofibroblasts. PLoS ONE. 2014;9(9):e106554. https://doi.org/10.1371/journal.pone.0106554.
Stone JD, Holt AW, Vuncannon JR, Brault JJ, Tulis DA. AMP-activated protein kinase inhibits transforming growth factor-β-mediated vascular smooth muscle cell growth: implications for a Smad-3-dependent mechanism. Am J Physiol Heart Circ Physiol. 2015;309(8):H1251-H1259. https://doi.org/10.1152/ajpheart.00846.2014.
Li N-S, Zou J-R, Lin H, et al. LKB1/AMPK inhibits TGF-β1 production and the TGF-β signaling pathway in breast cancer cells. Tumour Biol. 2016;37(6):8249-8258. https://doi.org/10.1007/s13277-015-4639-9.
Wilkinson-Berka JL, Deliyanti D, Rana I, et al. NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy. Antioxid Redox Signal. 2014;20(17):2726-2740. https://doi.org/10.1089/ars.2013.5357.
Tosi GM, Caldi E, Neri G, et al. HTRA1 and TGF-β1 concentrations in the aqueous humor of patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2017;58(1):162-167. https://doi.org/10.1167/iovs.16-20922.
Bai Y, Liang S, Yu W, et al. Semaphorin 3A blocks the formation of pathologic choroidal neovascularization induced by transforming growth factor beta. Mol Vis. 2014;20:1258-1270.
Hecker L, Logsdon NJ, Kurundkar D, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6(231):231ra47. https://doi.org/10.1126/scitranslmed.3008182.
Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15(9):1077-1081. https://doi.org/10.1038/nm.2005.
Jarman ER, Khambata VS, Cope C, et al. An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am J Respir Cell Mol Biol. 2014;50(1):158-169. https://doi.org/10.1165/rcmb.2013-0174OC.
Contributed Indexing:
Keywords: TGF-β1; epithelial-mesenchymal transition; mTORC1-NOX signaling; retinal pigment epithelium; senescence
Substance Nomenclature:
0 (Pyrazolones)
0 (Pyridones)
0 (Reactive Oxygen Species)
0 (Transforming Growth Factor beta1)
45II35329V (setanaxib)
EC 1.6.3.- (NADPH Oxidases)
EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 1)
Entry Date(s):
Date Created: 20210209 Date Completed: 20210726 Latest Revision: 20210726
Update Code:
20240104
DOI:
10.1096/fj.202001939RR
PMID:
33559185
Czasopismo naukowe
The retinal pigment epithelium (RPE) undergoes characteristic structural changes and epithelial-mesenchymal transition (EMT) during normal aging, which are exacerbated in age-related macular degeneration (AMD). Although the pathogenic mechanisms of aging and AMD remain unclear, transforming growth factor-β1 (TGF-β1) is known to induce oxidative stress, morphometric changes, and EMT as a senescence-promoting factor. In this study, we examined whether intravitreal injection of TGF-β1 into the mouse eye elicits senescence-like morphological alterations in the RPE and if this can be prevented by suppressing mammalian target of rapamycin complex 1 (mTORC1) or NADPH oxidase (NOX) signaling. We verified that intravitreal TGF-β1-induced stress fiber formation and EMT in RPE cells, along with age-associated morphometric changes, including increased variation in cell size and reduced cell density. In RPE cells, exogenous TGF-β1 increased endogenous expression of TGF-β1 and upregulated Smad3-ERK1/2-mTORC1 signaling, increasing reactive oxygen species (ROS) production and EMT. We demonstrated that inhibition of the mTORC1-NOX4 pathway by pretreatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-dependent protein kinase, or GKT137831, a NOX1/4 inhibitor, decreased ROS generation, prevented stress fiber formation, attenuated EMT, and improved the regularity of the RPE structure in vitro and in vivo. These results suggest that intravitreal TGF-β1 injection could be used as a screening model to investigate the aging-related structural and functional changes to the RPE. Furthermore, the regulation of TGF-β-mTORC1-NOX signaling could be a potential therapeutic target for reducing pathogenic alterations in aged RPE and AMD.
(© 2021 Federation of American Societies for Experimental Biology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies