Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

A shift from anaerobic digestion to dark fermentation in glycol ethylene fermentation.

Tytuł :
A shift from anaerobic digestion to dark fermentation in glycol ethylene fermentation.
Autorzy :
Sołowski G; Institute of Fluid-Flow Machinery of Polish Academy of Sciences, Gdańsk, Poland. .
Ziminski T; Institute of Fluid-Flow Machinery of Polish Academy of Sciences, Gdańsk, Poland.
Cenian A; Institute of Fluid-Flow Machinery of Polish Academy of Sciences, Gdańsk, Poland.
Pokaż więcej
Źródło :
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2021 Mar; Vol. 28 (12), pp. 15556-15564. Date of Electronic Publication: 2021 Feb 09.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms :
Biofuels*
Methane*
Anaerobiosis ; Bioreactors ; Ethylenes ; Fermentation ; Glycols ; Hydrogen/analysis
References :
Argun H, Onaran G (2018) Dark fermentative hydrogen gas production from lime treated waste paper towel hydrolysate. Waste and Biomass Valorization 9:801–810. https://doi.org/10.1007/s12649-017-9957-2. (PMID: 10.1007/s12649-017-9957-2)
Aworanti OA, Agarry SE, Ogunleye OO (2017) Biomethanization of the mixture of cattle manure, pig manure and poultry manure in co-digestion with waste peels of pineapple fruit and content of chicken-gizzard - part ii: optimization of process. Open Biotechnol J 11:54–71. https://doi.org/10.2174/1874070701711010054. (PMID: 10.2174/1874070701711010054)
Byrne E, Kovacs K, Van Niel EWJ et al (2018) Reduced use of phosphorus and water in sequential dark fermentation and anaerobic digestion of wheat straw and the application of ensiled steam-pretreated lucerne as a macronutrient provider in anaerobic digestion. Biotechnol Biofuels 11:1–16. https://doi.org/10.1186/s13068-018-1280-z. (PMID: 10.1186/s13068-018-1280-z)
Cazier E (2015) ROLE DES GAZ DISSOUS DANS LA DIGESTION ANAEROBIE PAR VOIE SECHE DE DECHETS LIGNO-CELLULOSIQUES. INRA, ADEME, UNIVERSITE MONTPELLIER https://www.ademe.fr/role-gaz-dissous-digestion-anaerobie-voie-seche-dechets-ligno-cellulosiques.
Chasnyk O, Sołowski G, Shkarupa O (2015) Historical, technical and economic aspects of biogas development: case of Poland and Ukraine. Renew Sustain Energy Rev 52:227–239. https://doi.org/10.1016/j.rser.2015.07.122. (PMID: 10.1016/j.rser.2015.07.122)
Detman A, Mielecki D, Pleśniak Ł, Bucha M, Janiga M, Matyasik I, Chojnacka A, Jędrysek MO, Błaszczyk MK, Sikora A (2018) Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnol Biofuels 11:116. https://doi.org/10.1186/s13068-018-1106-z. (PMID: 10.1186/s13068-018-1106-z)
Elreedy A, Tawfik A, Kubota K, Shimada Y, Harada H (2015) Hythane (H2 + CH4) production from petrochemical wastewater containing mono-ethylene glycol via stepped anaerobic baffled reactor. Int Biodeterior Biodegrad 105:252–261. https://doi.org/10.1016/j.ibiod.2015.09.015. (PMID: 10.1016/j.ibiod.2015.09.015)
Elreedy A, Fujii M, Tawfik A (2017) Factors affecting on hythane bio-generation via anaerobic digestion of mono-ethylene glycol contaminated wastewater: inoculum-to-substrate ratio, nitrogen-to-phosphorus ratio and pH. Bioresour Technol 223:10–19. https://doi.org/10.1016/j.biortech.2016.10.026. (PMID: 10.1016/j.biortech.2016.10.026)
Elreedy A, Fujii M, Tawfik A (2019) Psychrophilic hydrogen production from petrochemical wastewater via anaerobic sequencing batch reactor: techno-economic assessment and kinetic modelling. Int J Hydrogen Energy 44:5189–5202. https://doi.org/10.1016/j.ijhydene.2018.09.091. (PMID: 10.1016/j.ijhydene.2018.09.091)
Fagbohungbe MO, Onyeri C, Adewale C, Semple KT (2019) The effect of acidogenic and methanogenic conditions on the availability and stability of carbon, nitrogen and phosphorus in a digestate. J Environ Chem Eng 7:103138. https://doi.org/10.1016/j.jece.2019.103138. (PMID: 10.1016/j.jece.2019.103138)
Gallipoli A, Braguglia CM, Gianico A, Montecchio D, Pagliaccia P (2020) Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: kinetics study in mesophilic and thermophilic regimen. J Environ Sci (China) 89:167–179. https://doi.org/10.1016/j.jes.2019.10.016. (PMID: 10.1016/j.jes.2019.10.016)
Ghimire A, Trably E, Frunzo L, Pirozzi F, Lens PNL, Esposito G, Cazier EA, Escudié R (2018) Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresour Technol 248:180–186. https://doi.org/10.1016/j.biortech.2017.07.062. (PMID: 10.1016/j.biortech.2017.07.062)
Gyanashree B, Jyotirekha GH (2018) Oxidation of lignin from wood dust to vanillin using ionic liquid medium and study of its antioxidant activity. In: Sabu (ed) Proceedings of the International Conference on Reuse and Recycling (ICRM 2018), Kottayam, Kerala, India, 1st edn. Kottayam.
Hames B, Ruiz R, Scarlata C, et al (2008) Preparation of samples for compositional analysis: laboratory analytical procedure (LAP); Issue Date 08/08/2008 http://purl.access.gpo.gov/GPO/LPS94128.
Hu B, Chen S (2007) Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrogen Energy 32:3266–3273. https://doi.org/10.1016/j.ijhydene.2007.03.005. (PMID: 10.1016/j.ijhydene.2007.03.005)
Kaur S, Fischer S, Falta J, Rezwan K, Wilhelm M (2019) High surface area SiC(O)-based ceramic by pyrolysis of poly (ethylene glycol) methacrylate-modified polycarbosilane. J Am Ceram Soc 102:7187–7197. https://doi.org/10.1111/jace.16647. (PMID: 10.1111/jace.16647)
Lee M, Yang M, Choi S, Shin J, Park C, Cho SK, Kim YM (2019) Sequential production of lignin, fatty acid methyl esters and biogas from spent coffee grounds via an integrated physicochemical and biological process. Energies 12:2360. https://doi.org/10.3390/en12122360. (PMID: 10.3390/en12122360)
Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535. https://doi.org/10.1021/es015783i. (PMID: 10.1021/es015783i)
Mechery J, Thomas DM, Kumar CSP, Joseph L, Sylas VP (2019) Biohydrogen production from acidic and alkaline hydrolysates of paddy straw using locally isolated facultative bacteria through dark fermentation. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00515-0.
Millati R, Wikandari R, Ariyanto T, Utami R (2020) Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresour Technol 304:122998. https://doi.org/10.1016/j.biortech.2020.122998. (PMID: 10.1016/j.biortech.2020.122998)
Mirmohamadsadeghi S, Karimi K, Azarbaijani R, Parsa Yeganeh L, Angelidaki I, Nizami AS, Bhat R, Dashora K, Vijay VK, Aghbashlo M, Gupta VK, Tabatabaei M (2021) Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renew Sustain Energy Rev 135:110173. https://doi.org/10.1016/j.rser.2020.110173. (PMID: 10.1016/j.rser.2020.110173)
Molino A, De Gisi S, Petta L et al (2019) Experimental and theoretical investigation on the recovery of green chemicals and energy from mixed agricultural wastes by coupling anaerobic digestion and supercritical water gasification. Chem Eng J 370:1101–1110. https://doi.org/10.1016/j.cej.2019.03.292. (PMID: 10.1016/j.cej.2019.03.292)
Moriarty K (2013) Feasibility study of anaerobic digestion of food waste in St. Bernard, Louisiana: a study prepared in partnership with the Environmental Protection Agency for the RE-powering America’s land initiative: siting renewable energy on potentially contaminated land and mining https://www.nrel.gov/docs/fy13osti/57082.pdf.
Motte JC, Sambusiti C, Dumas C, Barakat A (2015) Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: an innovative strategy for biofuels and volatile fatty acids recovery. Appl Energy 147:67–73. https://doi.org/10.1016/j.apenergy.2015.02.042. (PMID: 10.1016/j.apenergy.2015.02.042)
Nguyen AQ, Nguyen LN, Phan HV, Galway B, Bustamante H, Nghiem LD (2019) Effects of operational disturbance and subsequent recovery process on microbial community during a pilot-scale anaerobic co-digestion. Int Biodeterior Biodegradation 138:70–77. https://doi.org/10.1016/j.ibiod.2019.01.002. (PMID: 10.1016/j.ibiod.2019.01.002)
Pachapur VL, Kutty P, Pachapur P, Brar SK, le Bihan Y, Galvez-Cloutier R, Buelna G (2019) Seed pretreatment for increased hydrogen production using mixed-culture systems with advantages over pure-culture systems. Energies 12:1–26. https://doi.org/10.3390/en12030530. (PMID: 10.3390/en12030530)
Promnuan K, Higuchi T, Imai T, Kongjan P, Reungsang A, O-Thong S (2020) Simultaneous biohythane production and sulfate removal from rubber sheet wastewater by two-stage anaerobic digestion. Int J Hydrogen Energy 45:263–274. https://doi.org/10.1016/j.ijhydene.2019.10.237. (PMID: 10.1016/j.ijhydene.2019.10.237)
Qi K, Li Z, Zhang C, Tan X, Wan C, Liu X, Wang L, Lee DJ (2020) Biodegradation of real industrial wastewater containing ethylene glycol by using aerobic granular sludge in a continuous-flow reactor: performance and resistance mechanism. Biochem Eng J 161:107711. https://doi.org/10.1016/j.bej.2020.107711. (PMID: 10.1016/j.bej.2020.107711)
Shin C-H, Bae JS (2019) Identification of biogas production by bio methane potential (BMP) test during the anaerobic digestion process of organic wastewater from polyester manufacturing processes. J Environ Sci Int 28:203–209. https://doi.org/10.5322/JESI.2019.28.2.203. (PMID: 10.5322/JESI.2019.28.2.203)
Shivasankaran N, Balan AV, Sankar SP, Magibalan S, Dinesh CM (2020) Removal of hydrogen sulphide and odour from tannery & textile effluents. Mater Today Proc 21:777–781. https://doi.org/10.1016/j.matpr.2019.07.242. (PMID: 10.1016/j.matpr.2019.07.242)
Sołowski G, Hrycak B, Czylkowski D et al (2019) Hydrogen and methane production under conditions of dark fermentation process with low oxygen concentration. In: Jibin K, Kalarikkal N, Thomas S, Nzihou A (eds) Re-use and recycling of materials solid waste management and water treatment, 1st edn. River Publisher, Gistrup, pp 263–272.
Sołowski G, Konkol I, Shalaby M, Cenian A (2020a) Rapid hydrogen generation from cotton wastes by mean of dark fermentation. 2:1438 SN Appl Sci. https://doi.org/10.1007/s42452-020-03247-3.
Sołowski G, Konkol I, Cenian A (2020b) Methane and hydrogen production from cotton waste by dark fermentation under anaerobic and micro-aerobic conditions. Biomass and Bioenergy 138:105576. https://doi.org/10.1016/j.biombioe.2020.105576. (PMID: 10.1016/j.biombioe.2020.105576)
Spasiano D (2018) Dark fermentation process as pretreatment for a sustainable denaturation of asbestos containing wastes. J Hazard Mater 349:45–50. https://doi.org/10.1016/j.jhazmat.2018.01.049. (PMID: 10.1016/j.jhazmat.2018.01.049)
Stewart J, Bhattacharya S, Madura R et al (1995) Anaerobic treatability of selected organic toxicants in petrochemical wastes. Water Res 29:2730–2738. https://doi.org/10.1016/0043-1354(95)00138-B. (PMID: 10.1016/0043-1354(95)00138-B)
Tan Y, Zheng C, Cai T, Niu C, Wang S, Pan Y, Lu X, Zhen G, Qian G, Zhao Y (2020) Anaerobic bioconversion of petrochemical wastewater to biomethane in a semi-continuous bioreactor: biodegradability, mineralization behaviors and methane productivity. Bioresour Technol 304:123005. https://doi.org/10.1016/j.biortech.2020.123005. (PMID: 10.1016/j.biortech.2020.123005)
Villa Montoya AC, Cristina da Silva Mazareli R, Delforno TP et al (2019) Hydrogen, alcohols and volatile fatty acids from the co-digestion of coffee waste (coffee pulp, husk, and processing wastewater) by applying autochthonous microorganisms. Int J Hydrogen Energy. 44:21434–21450. https://doi.org/10.1016/j.ijhydene.2019.06.115. (PMID: 10.1016/j.ijhydene.2019.06.115)
Walker S, Rothman R (2020) Life cycle assessment of bio-based and fossil-based plastic: a review. J Clean Prod 261:121158. https://doi.org/10.1016/j.jclepro.2020.121158. (PMID: 10.1016/j.jclepro.2020.121158)
Yang Z, Kang X, Chen B, Qiu G, Wei J, Li F, Wei C (2020) Effects of alkali, autoclaving, and Fe + autoclaving pretreatment on anaerobic digestion performance of coking sludge from the perspective of sludge extracts and methane production. Environmental Sci Pollut Res. https://doi.org/10.1007/s11356-020-11380-0.
Zheng M, Schideman LC, Tommaso G, Chen WT, Zhou Y, Nair K, Qian W, Zhang Y, Wang K (2017) Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: toxicity assessment and minimization. Energy Convers Manag 141:420–428. https://doi.org/10.1016/j.enconman.2016.10.034. (PMID: 10.1016/j.enconman.2016.10.034)
Grant Information :
3/344128/12/NCBR/2017 Narodowe Centrum Badań i Rozwoju; FBW-44 Sołowski Instytut Maszyn Przeplywowych im. Roberta Szewalskiego, Polskiej Akademii Nauk
Contributed Indexing :
Keywords: Bacteria rests; Hydrogen; Hydrogen sulphide; Methane; Petrochemical wastes; Unpretreated inoculum
Substance Nomenclature :
0 (Biofuels)
0 (Ethylenes)
0 (Glycols)
7YNJ3PO35Z (Hydrogen)
OP0UW79H66 (Methane)
Entry Date(s) :
Date Created: 20210209 Date Completed: 20210318 Latest Revision: 20210420
Update Code :
20210420
PubMed Central ID :
PMC7960603
DOI :
10.1007/s11356-020-12149-1
PMID :
33560510
Czasopismo naukowe
Anaerobic digestion of aqueous glycol ethylene was tested. The process lasted two cycles of 7 days, but after the second cycle, high hydrogen production occurred shift to dark fermentation. The biogas production lasted 14 days, obtaining peak values of hydrogen, and then rapidly stopped. In investigations, the following were checked: dependence of hydrogen, methane and hydrogen sulphide in the process. Mixtures of water with glycol ethylene mass ratio from 0.6 to 0.85 were substrates in experiments. The highest methane production was for water ethylene 0.7 ratio 2.85 L of methane with a yield of 178 mL of methane/g VSS (volatile suspended solids) of glycol ethylene. The optimal ratio of water and glycol ethylene was 0.85 25.5 mL of hydrogen (giving yield 1.71 mL of hydrogen/g VSS of glycol ethylene) and 1.71 mL of hydrogen sulphide emission for a 0.6 ratio. Popular polymer industry wastes, glycol ethylene, can be utilised by anaerobic digestion.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies