Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Minimum electric-field gradient coil design: Theoretical limits and practical guidelines.

Tytuł:
Minimum electric-field gradient coil design: Theoretical limits and practical guidelines.
Autorzy:
Roemer PB; Roemer Consulting, Lutz, Florida, USA.
Rutt BK; Department of Radiology, Stanford University, Stanford, California, USA.
Źródło:
Magnetic resonance in medicine [Magn Reson Med] 2021 Jul; Vol. 86 (1), pp. 569-580. Date of Electronic Publication: 2021 Feb 09.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Publication: 1999- : New York, NY : Wiley
Original Publication: San Diego : Academic Press,
MeSH Terms:
Magnetic Fields*
Magnetic Resonance Imaging*
Electricity ; Equipment Design ; Head/diagnostic imaging ; Humans
References:
Magn Reson Med. 2016 Dec;76(6):1939-1950. (PMID: 26628078)
IEEE Trans Med Imaging. 2021 Jan;40(1):129-142. (PMID: 32915730)
Phys Med Biol. 2016 Dec 21;61(24):8875-8889. (PMID: 27910827)
Magn Reson Med. 1995 Sep;34(3):494-7. (PMID: 7500892)
Neuroimage. 2013 Oct 15;80:220-33. (PMID: 23707579)
Phys Med Biol. 2010 Jun 7;55(11):3087-100. (PMID: 20463375)
Magn Reson Med. 2011 Nov;66(5):1498-509. (PMID: 21604293)
Magn Reson Med. 1994 Apr;31(4):450-3. (PMID: 8208122)
J Magn Reson Imaging. 2016 Sep;44(3):653-64. (PMID: 26921117)
Neuroimage. 2018 Mar;168:59-70. (PMID: 27915120)
MAGMA. 2003 Nov;16(3):113-20. (PMID: 14593514)
Magn Reson Med. 2008 Jul;60(1):128-34. (PMID: 18581353)
Magn Reson Med. 2018 Nov;80(5):2232-2245. (PMID: 29536587)
Magn Reson Med. 1999 Sep;42(3):561-70. (PMID: 10467301)
Magn Reson Med. 2017 Jun;77(6):2250-2262. (PMID: 27373901)
Magn Reson Med. 2019 Jan;81(1):686-701. (PMID: 30094874)
Magn Reson Med. 2006 Dec;56(6):1274-82. (PMID: 17075852)
Magn Reson Med. 2003 Jul;50(1):50-8. (PMID: 12815678)
Magn Reson Med. 2021 Jul;86(1):569-580. (PMID: 33565135)
Magn Reson Med. 2009 Sep;62(3):763-70. (PMID: 19526504)
Neuroimaging Clin N Am. 1999 May;9(2):363-77. (PMID: 10318720)
Phys Med Biol. 2008 Apr 7;53(7):1811-27. (PMID: 18364540)
Magn Reson Med. 2021 Oct;86(4):2301-2315. (PMID: 34080744)
Magn Reson Med. 1996 Jun;35(6):875-86. (PMID: 8744016)
Grant Information:
P41 EB027061 United States EB NIBIB NIH HHS; U01 EB025144 United States EB NIBIB NIH HHS; P41 EB015891 United States EB NIBIB NIH HHS; R01 EB025131 United States EB NIBIB NIH HHS
Contributed Indexing:
Keywords: E-field; PNS; asymmetric gradient; electric field; folded gradient; gradient coil; head gradient; peripheral nerve stimulation
Entry Date(s):
Date Created: 20210210 Date Completed: 20210520 Latest Revision: 20240331
Update Code:
20240331
PubMed Central ID:
PMC8049068
DOI:
10.1002/mrm.28681
PMID:
33565135
Czasopismo naukowe
Purpose: To develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design while maintaining a desired imaging performance.
Methods: Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E-field. Gradient coils confined to various build envelopes were designed with minimum E-fields subject to standard magnetic field constraints. We examined the characteristics of E-field-constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions.
Results: For transverse gradients, symmetric solutions create high levels of E-fields in the shoulder region, while fully asymmetric solutions create high E-fields on the top of the head. Partially asymmetric solutions result in the lowest E-fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E-field for x-gradient and y-gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion.
Conclusions: We introduce a generalized method for minimum E-field gradient design and define the theoretical limits of magnetic energy and peak E-field for gradient coils of arbitrary cylindrical geometry.
(© 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies