Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes.

Tytuł:
Evolution, expression and functional analysis of cultivated allotetraploid cotton DIR genes.
Autorzy:
Liu Z; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Wang X; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Sun Z; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Zhang Y; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Meng C; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Chen B; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Wang G; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Ke H; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Wu J; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Yan Y; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Wu L; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Li Z; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Yang J; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
Zhang G; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China. .
Ma Z; State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China. .
Źródło:
BMC plant biology [BMC Plant Biol] 2021 Feb 10; Vol. 21 (1), pp. 89. Date of Electronic Publication: 2021 Feb 10.
Typ publikacji:
Comparative Study; Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2001-
MeSH Terms:
Evolution, Molecular*
Genes, Plant*
Tetraploidy*
Crops, Agricultural/*genetics
Gossypium/*genetics
Plant Proteins/*genetics
Gene Expression Regulation, Plant ; Genetic Variation ; Genotype ; Phylogeny
References:
Nature. 2007 Sep 27;449(7161):463-7. (PMID: 17721507)
Biochem Genet. 2019 Aug;57(4):487-506. (PMID: 30649641)
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37. (PMID: 21593126)
Proteomics. 2011 Nov;11(22):4296-309. (PMID: 21928292)
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W497-502. (PMID: 20507917)
Plant Cell. 2014 Sep;26(9):3775-91. (PMID: 25238751)
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8. (PMID: 19458158)
Nature. 2000 Dec 14;408(6814):796-815. (PMID: 11130711)
Plant Cell Rep. 2014 May;33(5):697-706. (PMID: 24633990)
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17797-802. (PMID: 25468966)
Plant Cell. 2013 Nov;25(11):4421-38. (PMID: 24220634)
Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268. (PMID: 31777944)
Nucleic Acids Res. 2012 Apr;40(7):e49. (PMID: 22217600)
PLoS Comput Biol. 2006 Sep 1;2(9):e115. (PMID: 16948529)
Bioinformatics. 2011 Apr 1;27(7):1017-8. (PMID: 21330290)
Methods Mol Biol. 2016;1374:115-40. (PMID: 26519403)
Plant Mol Biol. 2002 May;49(2):199-214. (PMID: 11999375)
Nature. 2010 Jan 14;463(7278):178-83. (PMID: 20075913)
PLoS Genet. 2008 Feb;4(2):e25. (PMID: 18248099)
BMC Plant Biol. 2018 Dec 7;18(1):339. (PMID: 30526498)
Sci Rep. 2018 Apr 3;8(1):5500. (PMID: 29615685)
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14498-503. (PMID: 23940370)
Annu Rev Plant Biol. 2018 Apr 29;69:209-236. (PMID: 29489394)
J Biol Chem. 2012 Oct 5;287(41):33957-72. (PMID: 22854967)
Mol Plant. 2020 Aug 3;13(8):1194-1202. (PMID: 32585190)
Proc Natl Acad Sci U S A. 1989 Jun;86(11):4132-6. (PMID: 16594050)
Mol Phylogenet Evol. 2015 Nov;92:45-52. (PMID: 26049043)
Plant Physiol Biochem. 2013 Jun;67:144-53. (PMID: 23562798)
J Nat Prod. 2015 Jun 26;78(6):1231-42. (PMID: 25981198)
Front Genet. 2018 Apr 16;9:136. (PMID: 29713336)
Front Plant Sci. 2017 Jul 04;8:1185. (PMID: 28725237)
Angew Chem Int Ed Engl. 2015 Dec 1;54(49):14660-3. (PMID: 26460165)
Nat Genet. 2011 Feb;43(2):101-8. (PMID: 21186351)
Plant Physiol. 2008 Oct;148(2):993-1003. (PMID: 18715958)
New Phytol. 2014 Apr;202(2):509-20. (PMID: 24443839)
Plant Mol Biol. 2018 May;97(1-2):73-101. (PMID: 29713868)
Acta Biochim Biophys Sin (Shanghai). 2012 Jul;44(7):555-64. (PMID: 22595512)
Science. 1997 Jan 17;275(5298):362-6. (PMID: 8994027)
Genome. 2006 Nov;49(11):1393-8. (PMID: 17426754)
Phytochemistry. 2001 Jul;57(6):883-97. (PMID: 11423139)
BMC Plant Biol. 2004 Jun 01;4:10. (PMID: 15171794)
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259. (PMID: 30931475)
J Integr Plant Biol. 2009 Jul;51(7):626-37. (PMID: 19566641)
Trends Plant Sci. 2006 Jun;11(6):274-80. (PMID: 16697247)
Plant Physiol. 2013 May;162(1):86-95. (PMID: 23535943)
Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63. (PMID: 17531802)
Nat Genet. 2019 Apr;51(4):739-748. (PMID: 30886425)
Phytochemistry. 2015 Apr;112:170-8. (PMID: 25107662)
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30. (PMID: 24288371)
Front Plant Sci. 2018 Feb 27;9:225. (PMID: 29535744)
Nat Biotechnol. 2019 Apr;37(4):420-423. (PMID: 30778233)
Plant Physiol. 1997 May;114(1):295-305. (PMID: 9159952)
Nat Genet. 2018 Jun;50(6):803-813. (PMID: 29736016)
Plant Cell Environ. 2018 Sep;41(9):1997-2007. (PMID: 29047109)
Plant Sci. 2019 Sep;286:7-16. (PMID: 31300144)
G3 (Bethesda). 2016 Sep 08;6(9):2717-24. (PMID: 27342735)
Nat Commun. 2019 Jul 5;10(1):2989. (PMID: 31278252)
J Exp Bot. 2017 Jun 15;68(13):3287-3301. (PMID: 28472349)
Appl Microbiol Biotechnol. 2017 Mar;101(5):2021-2032. (PMID: 27858135)
Nucleic Acids Res. 2018 Jan 4;46(D1):D260-D266. (PMID: 29140473)
BMC Plant Biol. 2017 Jun 8;17(1):101. (PMID: 28595571)
Biochem Biophys Res Commun. 2012 Mar 23;419(4):779-81. (PMID: 22390928)
Plant Cell. 2007 Jan;19(1):148-62. (PMID: 17237352)
Nat Prod Rep. 2020 Jul 1;37(7):919-961. (PMID: 31971193)
Plant Cell Physiol. 2017 Feb 1;58(2):398-408. (PMID: 28394400)
Nature. 2012 Dec 20;492(7429):423-7. (PMID: 23257886)
BMC Genomics. 2016 Mar 08;17:197. (PMID: 26951621)
Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86. (PMID: 22110026)
Nat Biotechnol. 2015 May;33(5):531-7. (PMID: 25893781)
Nat Genet. 2018 Jun;50(6):796-802. (PMID: 29736014)
Trends Plant Sci. 2007 Dec;12(12):556-63. (PMID: 18198522)
Nat Genet. 2012 Oct;44(10):1098-103. (PMID: 22922876)
Biotechniques. 2007 Jul;43(1 Suppl):25-30. (PMID: 17936939)
Mol Biol Evol. 2016 Jul;33(7):1870-4. (PMID: 27004904)
Phytochemistry. 2015 May;113:140-8. (PMID: 25457488)
Cell Mol Life Sci. 2007 Mar;64(5):542-54. (PMID: 17192808)
Nat Commun. 2014;5:3050. (PMID: 24430011)
Phytochemistry. 2007 Jul;68(14):1975-91. (PMID: 17590394)
Grant Information:
2016ZX08005003-005 the National Major Science and Technology Program; Grant C2019204365 the Outstanding Youth Fund of Hebei Province; CARS15-03 the China Agriculture Research System
Contributed Indexing:
Keywords: Cotton; Dirigent proteins; Evolution; Fiber development; Overexpression; RNA-seq; Verticillium wilt
Substance Nomenclature:
0 (Plant Proteins)
Entry Date(s):
Date Created: 20210211 Date Completed: 20210503 Latest Revision: 20210503
Update Code:
20240105
PubMed Central ID:
PMC7876823
DOI:
10.1186/s12870-021-02859-0
PMID:
33568051
Czasopismo naukowe
Background: Dirigent (DIR) proteins mediate regioselectivity and stereoselectivity during lignan biosynthesis and are also involved in lignin, gossypol and pterocarpan biosynthesis. This gene family plays a vital role in enhancing stress resistance and in secondary cell-wall development, but systematical understanding is lacking in cotton.
Results: In this study, 107 GbDIRs and 107 GhDIRs were identified in Gossypium barbadense and Gossypium hirsutum, respectively. Most of these genes have a classical gene structure without intron and encode proteins containing a signal peptide. Phylogenetic analysis showed that cotton DIR genes were classified into four distinct subfamilies (a, b/d, e, and f). Of these groups, DIR-a and DIR-e were evolutionarily conserved, and segmental and tandem duplications contributed equally to their formation. In contrast, DIR-b/d mainly expanded by recent tandem duplications, accompanying with a number of gene clusters. With the rapid evolution, DIR-b/d-III was a Gossypium-specific clade involved in atropselective synthesis of gossypol. RNA-seq data highlighted GhDIRs in response to Verticillium dahliae infection and suggested that DIR gene family could confer Verticillium wilt resistance. We also identified candidate DIR genes related to fiber development in G. barbadense and G. hirsutum and revealed their differential expression. To further determine the involvement of DIR genes in fiber development, we overexpressed a fiber length-related gene GbDIR78 in Arabidopsis and validated its function in trichomes and hypocotyls.
Conclusions: These findings contribute novel insights towards the evolution of DIR gene family and provide valuable information for further understanding the roles of DIR genes in cotton fiber development as well as in stress responses.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies