Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Traffic generated emissions alter the lung microbiota by promoting the expansion of Proteobacteria in C57Bl/6 mice placed on a high-fat diet.

Tytuł :
Traffic generated emissions alter the lung microbiota by promoting the expansion of Proteobacteria in C57Bl/6 mice placed on a high-fat diet.
Autorzy :
Daniel S; Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA.
Pusadkar V; BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
McDonald J; Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87108, USA.
Mirpuri J; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Azad RK; BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; Department of Mathematics, University of North Texas, Denton, TX 76203, USA.
Goven A; Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA.
Lund AK; Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA. Electronic address: .
Pokaż więcej
Źródło :
Ecotoxicology and environmental safety [Ecotoxicol Environ Saf] 2021 Apr 15; Vol. 213, pp. 112035. Date of Electronic Publication: 2021 Feb 11.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Amsterdam, Netherlands : Elsevier
MeSH Terms :
Proteobacteria*
Lung/*microbiology
Vehicle Emissions/*toxicity
Air Pollution ; Animals ; Diet, High-Fat ; Dysbiosis ; Male ; Mice ; Mice, Inbred C57BL ; Microbiota
References :
Appl Environ Microbiol. 2013 Sep;79(17):5112-20. (PMID: 23793624)
Environ Pollut. 2018 Sep;240:817-830. (PMID: 29783199)
Gut Microbes. 2014 Jan-Feb;5(1):71-3. (PMID: 24637596)
Expert Rev Respir Med. 2013 Jun;7(3):245-57. (PMID: 23734647)
J Immunol. 2014 Aug 15;193(4):1666-71. (PMID: 25031459)
Mediators Inflamm. 2013;2013:751068. (PMID: 23737654)
Front Immunol. 2018 Nov 13;9:2649. (PMID: 30483273)
Dis Model Mech. 2014 Oct;7(10):1131-42. (PMID: 25256712)
Curr Opin Pulm Med. 2016 Mar;22(2):138-43. (PMID: 26761628)
Front Microbiol. 2017 Oct 06;8:1935. (PMID: 29056933)
Mucosal Immunol. 2017 Mar;10(2):299-306. (PMID: 27966551)
Ann Am Thorac Soc. 2016 Oct;13(10):1814-1827. (PMID: 27314857)
Eur Respir J. 2013 Aug;42(2):304-13. (PMID: 23314899)
J Exp Med. 2016 Jan 11;213(1):53-73. (PMID: 26712806)
Cases J. 2009 Jan 14;2(1):50. (PMID: 19144160)
Front Physiol. 2018 Aug 21;9:1168. (PMID: 30246806)
Nat Med. 2015 Jul;21(7):808-14. (PMID: 26053625)
Environ Res. 2018 Jan;160:449-461. (PMID: 29073573)
Respir Res. 2017 Jul 25;18(1):143. (PMID: 28743263)
Environ Sci Technol. 2004 May 1;38(9):2513-22. (PMID: 15180045)
J Leukoc Biol. 2016 Nov;100(5):943-950. (PMID: 27365534)
Int J Chron Obstruct Pulmon Dis. 2020 Mar 03;15:501-514. (PMID: 32184587)
Appl Environ Microbiol. 2009 Dec;75(23):7537-41. (PMID: 19801464)
Am J Respir Cell Mol Biol. 2003 Apr;28(4):485-98. (PMID: 12654638)
Environ Res. 2020 Feb;181:108913. (PMID: 31753468)
Ther Adv Chronic Dis. 2015 Sep;6(5):286-98. (PMID: 26336597)
Neurotoxicology. 2017 Mar;59:133-139. (PMID: 26610921)
Am J Respir Crit Care Med. 2011 Jul 1;184(1):82-91. (PMID: 21493736)
J Toxicol. 2011;2011:487074. (PMID: 21860622)
Lett Appl Microbiol. 2003;36(3):135-9. (PMID: 12581370)
Chronic Dis Transl Med. 2018 Jun 07;4(2):75-94. (PMID: 29988883)
Am J Respir Crit Care Med. 2011 Feb 15;183(4):455-61. (PMID: 20870755)
Part Fibre Toxicol. 2013 Dec 17;10:62. (PMID: 24344990)
Toxicol Sci. 2015 May;145(1):5-15. (PMID: 25911656)
J Expo Sci Environ Epidemiol. 2009 Jul;19(5):443-57. (PMID: 19277070)
J Clin Microbiol. 2008 Mar;46(3):1153-4. (PMID: 18174308)
FASEB J. 2016 May;30(5):1880-91. (PMID: 26864854)
Mediators Inflamm. 2013;2013:619523. (PMID: 24058272)
Am J Respir Crit Care Med. 2013 Nov 15;188(10):1224-31. (PMID: 23992479)
Curr Opin Clin Nutr Metab Care. 2015 Sep;18(5):515-20. (PMID: 26154278)
Appl Environ Microbiol. 2005 Dec;71(12):8228-35. (PMID: 16332807)
World J Gastroenterol. 2016 Oct 28;22(40):8905-8909. (PMID: 27833381)
Immunol Invest. 2010;39(4-5):383-406. (PMID: 20450284)
PLoS One. 2010 Jan 05;5(1):e8578. (PMID: 20052417)
PLoS One. 2014 Dec 03;9(12):e113466. (PMID: 25470730)
Front Cell Infect Microbiol. 2020 Feb 19;10:9. (PMID: 32140452)
Appl Environ Microbiol. 2007 Mar;73(5):1576-85. (PMID: 17220268)
J Thorac Dis. 2016 Jan;8(1):E69-74. (PMID: 26904255)
Inhal Toxicol. 2017 May;29(6):266-281. (PMID: 28816559)
Annu Rev Physiol. 2016;78:481-504. (PMID: 26527186)
Biomed Res Int. 2017;2017:9351507. (PMID: 29230419)
Inhal Toxicol. 2008 Oct;20(13):1157-68. (PMID: 18951232)
Ann N Y Acad Sci. 2010 Aug;1203:60-5. (PMID: 20716284)
Grant Information :
R00 ES016586 United States ES NIEHS NIH HHS; R15 ES026795 United States ES NIEHS NIH HHS
Contributed Indexing :
Keywords: Air pollution; Immunoglobulins; Lung microbiome; Proteobacteria
Substance Nomenclature :
0 (Vehicle Emissions)
Entry Date(s) :
Date Created: 20210213 Date Completed: 20210323 Latest Revision: 20210415
Update Code :
20210623
PubMed Central ID :
PMC7989785
DOI :
10.1016/j.ecoenv.2021.112035
PMID :
33581487
Czasopismo naukowe
Air pollution has been documented to contribute to severe respiratory diseases like asthma and chronic obstructive pulmonary disorder (COPD). Although these diseases demonstrate a shift in the lung microbiota towards Proteobacteria, the effects of traffic generated emissions on lung microbiota profiles have not been well-characterized. Thus, we investigated the hypothesis that exposure to traffic-generated emissions can alter lung microbiota and immune defenses. Since a large population of the Western world consumes a diet rich in fats, we sought to investigate the synergistic effects of mixed vehicle emissions and high-fat diet consumption. We exposed 3-month-old male C57Bl/6 mice placed either on regular chow (LF) or a high-fat (HF: 45% kcal fat) diet to mixed emissions (ME: 30 µg PM/m 3 gasoline engine emissions+70 µg PM/m 3 diesel engine emissions) or filtered air (FA) for 6 h/d, 7 d/wk for 30 days. Levels of pulmonary immunoglobulins IgA, IgG, and IgM were analyzed by ELISA, and lung microbial profiling was done using qPCR and Illumina 16 S sequencing. We observed a significant decrease in lung IgA in the ME-exposed animals, compared to the FA-exposed animals, both fed a HF diet. Our results also revealed a significant decrease in lung IgG in the ME-exposed animals both on the LF diet and HF diet, in comparison to the FA-exposed animals. We also observed an expansion of Enterobacteriaceae belonging to the Proteobacteria phylum in the ME-exposed groups on the HF diet. Collectively, we show that the combined effects of ME and HF diet result in decreased immune surveillance and lung bacterial dysbiosis, which is of significance in lung diseases.
(Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies