Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA.

Tytuł:
Quantification of intracranial arterial stenotic degree evaluated by high-resolution vessel wall imaging and time-of-flight MR angiography: reproducibility, and diagnostic agreement with DSA.
Autorzy:
Gong Y; Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China.; Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, 300100, China.
Cao C; Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China.; Department of Radiology, Tianjin Huanhu Hospital, Key Laboratory for Cerebral Artery and Neural Degeneration of Tianjin, Tianjin, 300350, China.
Guo Y; Department of Radiology, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China.
Chang B; Department of Neurosurgery, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China.
Sheng Z; Department of Neurosurgery, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China.
Shen W; Department of Radiology, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China.
Zou Y; Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China.; Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
Lu X; Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China.; Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
Xing J; School of Medicine, Nankai University, Tianjin, 300071, China.
Xia S; Department of Radiology, Tianjin First Central Hospital, School of Medical, Nankai University, Tianjin, 300192, China. .
Źródło:
European radiology [Eur Radiol] 2021 Aug; Vol. 31 (8), pp. 5479-5489. Date of Electronic Publication: 2021 Feb 14.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer International, c1991-
MeSH Terms:
Arteries*
Magnetic Resonance Angiography*
Angiography, Digital Subtraction ; Humans ; Imaging, Three-Dimensional ; Reproducibility of Results ; Retrospective Studies
References:
Feldmann E, Daneault N, Kwan E et al (1990) Chinese-white differences in the distribution of occlusive cerebrovascular-disease. Neurology 40:1541–1545. (PMID: 10.1212/WNL.40.10.1540)
Han Y, Qiao H, Chen et al (2018) Intracranial artery stenosis magnetic resonance imaging aetiology and progression study: rationale and design. Brain Behav 8:e01154. (PMID: 10.1002/brb3.1154)
Reith W, Berkefeld J, Dietrich P, Fiehler J, Jansen O (2015) Diagnosis and treatment of intracranial stenoses. Clin Neuroradiol 25(Suppl 2):307–316. (PMID: 10.1007/s00062-015-0462-3)
Liu L, Wong KS, Leng et al (2015) Dual antiplatelet therapy in stroke and ICAS. Neurology 85:1154–1162. (PMID: 10.1212/WNL.0000000000001972)
Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) Trial Investigators (2003) Design, progress and challenges of a double-blind trial of warfarin versus aspirin for symptomatic intracranial arterial stenosis. Neuroepidemiology 22:106–117. (PMID: 10.1159/000068744)
Huang J, Degnan AJ, Liu Q et al (2012) Comparison of NASCET and WASID criteria for the measurement of intracranial stenosis using digital subtraction and computed tomography angiography of the middle cerebral artery. J Neuroradiol 39:342–345. (PMID: 10.1016/j.neurad.2011.11.005)
Hurford R, Wolters FJ, Li L, Lau KK, Küker W, Rothwell PM (2020) Prevalence, predictors, and prognosis of symptomatic intracranial stenosis in patients with transient ischaemic attack or minor stroke: a population-based cohort study. Lancet Neurol 19:413–421. (PMID: 10.1016/S1474-4422(20)30079-X)
Guo C, Shi X, Ding X, Zhou Z (2018) Analysis of radiation effects in digital subtraction angiography of intracranial artery stenosis. World Neurosurg 115:e472–e475. (PMID: 10.1016/j.wneu.2018.04.072)
Sandoval-Garcia C, Yang P, Schubert T et al (2017) Comparison of the diagnostic utility of 4D-DSA with conventional 2D- and 3D-DSA in the diagnosis of cerebrovascular abnormalities. AJNR Am J Neuroradiol 38:729–734. (PMID: 10.3174/ajnr.A5137)
Lee JN, Chung MS, Jung SC et al (2016) Comparison of high-resolution MR imaging and digital subtraction angiography for the characterization and diagnosis of intracranial artery disease. AJNR Am J Neuroradiol 37:2245–2250. (PMID: 10.3174/ajnr.A4950)
Park JE, Jung SC, Lee SH et al (2017) Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis. Eur Radiol 27:4737–4746. (PMID: 10.1007/s00330-017-4860-6)
Ishimaru H, Ochi M, Morikawa M et al (2007) Accuracy of pre- and postcontrast 3D time-of-flight MR angiography in patients with acute ischemic stroke: correlation with catheter angiography. AJNR Am J Neuroradiol 28:923. (PMID: 174946718134328)
Liu D, Liu J, Cai Y, Wong KSL, Liu L (2020) Is the future of symptomatic intracranial atherosclerotic stenosis management promising? J Neurol Neurosurg Psychiatry 91:122. (PMID: 10.1136/jnnp-2019-321564)
Kathuveetil A, Sylaja PN, Senthilvelan S, Kesavadas C, Banerjee M, Jayanand Sudhir B (2020) Vessel wall thickening and enhancement in high-resolution intracranial vessel wall imaging: a predictor of future ischemic events in Moyamoya disease. AJNR Am J Neuroradiol 41:100–105. (PMID: 10.3174/ajnr.A6360)
Kim DK, Verdoorn JT, Gunderson TM et al (2019) Comparison of non-contrast vessel wall imaging and 3-D time-of-flight MRA for atherosclerotic stenosis and plaque characterization within intracranial arteries. J Neuroradiol. https://doi.org/10.1016/j.neurad.2019.05.003.
Al-Smadi AS, Abdalla RN, Elmokadem AH et al (2019) Diagnostic accuracy of high-resolution black-blood MRI in the evaluation of intracranial large-vessel arterial occlusions. AJNR Am J Neuroradiol 40:954–959. (PMID: 10.3174/ajnr.A6065)
Kesav P, Krishnavadana B, Kesavadas C et al (2019) Utility of intracranial high-resolution vessel wall magnetic resonance imaging in differentiating intracranial vasculopathic diseases causing ischemic stroke. Neuroradiology. https://doi.org/10.1007/s00234-019-02157-5.
Xu W (2019) High-resolution MRI of intracranial large artery diseases: how to use it in clinical practice? Stroke Vasc Neurol 4:102–104. (PMID: 10.1136/svn-2018-000210)
Okuchi S, Fushimi Y, Okada T et al (2019) Visualization of carotid vessel wall and atherosclerotic plaque: T1-SPACE vs. compressed sensing T1-SPACE. Eur Radiol 29:4114–4122. (PMID: 10.1007/s00330-018-5862-8)
Satyarthee GD (2017) Moyamoya disease: impact of evolving different management approaches to improve overall neurologic outcome. World Neurosurg 102:684–686. (PMID: 10.1016/j.wneu.2017.02.120)
Obusez EC, Hui F, Hajj-Ali RA et al (2014) High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol 35:1527–1532. (PMID: 10.3174/ajnr.A3909)
Yang Q, Deng Z, Bi X et al (2017) Whole-brain vessel wall MRI: a parameter tune-up solution to improve the scan efficiency of three-dimensional variable flip-angle turbo spin-echo. J Magn Reson Imaging 46:751–757. (PMID: 10.1002/jmri.25611)
Dieleman N, van der Kolk AG, Zwanenburg JJ et al (2014) Imaging intracranial vessel wall pathology with magnetic resonance imaging: current prospects and future directions. Circulation 130:192–201. (PMID: 10.1161/CIRCULATIONAHA.113.006919)
Teng Z, Peng W, Zhan Q et al (2016) An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery. Eur Radiol 26:2206–2214. (PMID: 10.1007/s00330-015-4008-5)
Qiao Y, Zeiler SR, Mirbagheri S et al (2014) Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 271:534–542. (PMID: 10.1148/radiol.13122812)
Azuma M, Hirai T, Shigematsu Y et al (2015) Evaluation of intracranial dural arteriovenous fistulas: comparison of unenhanced 3T 3D time-of-flight MR angiography with digital subtraction angiography. Magn Reson Med Sci 14:285–293. (PMID: 10.2463/mrms.2014-0120)
Samuels OB, Joseph GJ, Lynn MJ, Smith HA, Chimowitz MI (2000) A standardized method for measuring intracranial arterial stenosis. AJNR Am J Neuroradiol 21:643–646. (PMID: 107827727976653)
Tombetti E, Godi C, Ambrosi A et al (2018) Novel angiographic scores for evaluation of large vessel vasculitis. Sci Rep 8:15979. (PMID: 10.1038/s41598-018-34395-7)
de Boysson H, Boulouis G, Parienti JJ et al (2017) Concordance of time-of-flight MRA and digital subtraction angiography in adult primary central nervous system vasculitis. AJNR Am J Neuroradiol 38:1917–1922. (PMID: 10.3174/ajnr.A5300)
Mandell DM, Mossa-Basha M, Qiao Y et al (2017) Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 38:218–229. (PMID: 10.3174/ajnr.A4893)
Wu Y, Wu F, Liu Y et al (2019) High-resolution magnetic resonance imaging of cervicocranial artery dissection: imaging features associated with stroke. Stroke 50:3101–3107. (PMID: 10.1161/STROKEAHA.119.026362)
Kundel HL, Polansky M (2003) Measurement of observer agreement. Radiology 228:303–308. (PMID: 10.1148/radiol.2282011860)
Timsit C, Soize S, Benaissa A, Portefaix C, Gauvrit JY, Pierot L (2016) Contrast-enhanced and time-of-flight MRA at 3T compared with DSA for the follow-up of intracranial aneurysms treated with the WEB device. AJNR Am J Neuroradiol 37:1684–1689. (PMID: 10.3174/ajnr.A4791)
Zhao DL, Li C, Chen XH et al (2019) Reproducibility of 3.0T high-resolution magnetic resonance imaging for the identification and quantification of middle cerebral arterial atherosclerotic plaques. J Stroke Cerebrovasc Dis 28:1824–1831. (PMID: 10.1016/j.jstrokecerebrovasdis.2019.04.020)
Wan L, Zhang N, Zhang L et al (2019) Reproducibility of simultaneous imaging of intracranial and extracranial arterial vessel walls using an improved T1-weighted DANTE-SPACE sequence on a 3 T MR system. Magn Reson Imaging 62:152–158. (PMID: 10.1016/j.mri.2019.04.016)
Cogswell PM, Lants SK, Davis LT, Donahue MJ (2019) Vessel wall and lumen characteristics with age in healthy participants using 3T intracranial vessel wall magnetic resonance imaging. J Magn Reson Imaging 50:1452–1460. (PMID: 10.1002/jmri.26750)
Alexander MD, Yuan C, Rutman A et al (2016) High-resolution intracranial vessel wall imaging: imaging beyond the lumen. J Neurol Neurosurg Psychiatry 87:589–597. (PMID: 10.1136/jnnp-2015-312020)
Kim DK, Verdoorn JT, Gunderson TM et al (2020) Comparison of non-contrast vessel wall imaging and 3-D time-of-flight MRA for atherosclerotic stenosis and plaque characterization within intracranial arteries. J Neuroradiol 47:266–271. (PMID: 10.1016/j.neurad.2019.05.003)
Young CC, Bonow RH, Barros G, Mossa-Basha M, Kim LJ, Levitt MR (2019) Magnetic resonance vessel wall imaging in cerebrovascular diseases. Neurosurg Focus 47:E4. (PMID: 10.3171/2019.9.FOCUS19599)
Mossa-Basha M, Hwang WD, De Havenon A et al (2015) Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke 46:1567–1573. (PMID: 10.1161/STROKEAHA.115.009037)
Mossa-Basha M, Shibata DK, Hallam DK et al (2017) Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies. Stroke 48:3026–3033. (PMID: 10.1161/STROKEAHA.117.018227)
Alexander MD, de Havenon A, Mossa-Basha M, McNally JS (2020) How far can we take vessel wall MRI for intracranial atherosclerosis? The tissue is still the issue. AJNR Am J Neuroradiol 41:E30–E31. (PMID: 10.3174/ajnr.A6501)
Grant Information:
81871342 National Natural Science Foundation of China; 2019CM05 Spring plan of Tianjin first central hospital
Contributed Indexing:
Keywords: IAD; MRA; Reproducibility of results; Vascular diseases
Entry Date(s):
Date Created: 20210215 Date Completed: 20210713 Latest Revision: 20210713
Update Code:
20240104
DOI:
10.1007/s00330-021-07719-x
PMID:
33585995
Czasopismo naukowe
Objectives: The purpose of this study was to compare the reproducibility and diagnostic agreement of high-resolution vessel wall imaging (HR-VWI) and time-of-flight magnetic resonance angiography (TOF-MRA) with digital subtraction angiography (DSA) to evaluate intracranial arterial stenosis.
Methods: We retrospectively enrolled patients who underwent HR-VWI and TOF-MRA with suspected intracranial artery disease and had DSA results from our institutional imaging database. Two neuroradiologists separately and independently evaluated anonymous image data for the stenotic lesions. DSA was analyzed by two neurointerventionalists and it served as a standard criterion. The reproducibility of these two MR techniques was determined by the intraclass correlation coefficients (ICCs). The diagnostic agreement to DSA was assessed by the concordance correlation coefficients (CCCs).
Results: A total of 246 lesions from 106 individuals were analyzed for stenotic degrees. The total intra-observer and inter-observer reproducibility of HR-VWI was excellent for identifying stenosis and better than of TOF-MRA. The overall concordance of HR-VWI with DSA was excellent with CCC = 0.932, whereas TOF-MRA was 0.694. In addition, HR-VWI could provide additional vessel wall information.
Conclusions: HR-VWI has more advantages over TOF-MRA, such as better reproducibilities and diagnostic agreements with DSA to analyze intracranial arterial stenosis. It provides additional information that helps in clinical diagnosis and management.
Key Points: • High-resolution vessel wall imaging can assess intracranial arterial stenosis with a better reproducibility than TOF-MRA and has a higher diagnostic agreement with DSA. • High-resolution vessel wall imaging had a higher diagnostic agreement with DSA compared with TOF-MRA. • Apart from evaluating vascular stenosis, HR-VWI provided additional vessel wall information to help in clinical diagnosis.
(© 2021. European Society of Radiology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies