Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.

Tytuł:
Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
Autorzy:
Olsson AE; Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden. .
Malešević N; Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden.
Björkman A; Department of Hand Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden.; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
Antfolk C; Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden. .
Źródło:
Journal of neuroengineering and rehabilitation [J Neuroeng Rehabil] 2021 Feb 15; Vol. 18 (1), pp. 35. Date of Electronic Publication: 2021 Feb 15.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : BioMed Central, 2004-
MeSH Terms:
Artificial Limbs*
User-Computer Interface*
Movement/*physiology
Muscle, Skeletal/*physiology
Pattern Recognition, Automated/*methods
Adult ; Arm/physiology ; Biomechanical Phenomena ; Discriminant Analysis ; Electromyography/methods ; Humans ; Male ; Neural Networks, Computer ; Young Adult
References:
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):270-8. (PMID: 19497834)
Psychon Bull Rev. 2016 Apr;23(2):640-7. (PMID: 26374437)
Comput Biol Med. 2020 May;120:103723. (PMID: 32421642)
J Rehabil Res Dev. 2011;48(6):643-59. (PMID: 21938652)
J Electromyogr Kinesiol. 2005 Aug;15(4):358-66. (PMID: 15811606)
IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):756-64. (PMID: 24710833)
PLoS One. 2018 Oct 30;13(10):e0206049. (PMID: 30376567)
IEEE Trans Biomed Eng. 1993 Jan;40(1):82-94. (PMID: 8468080)
Med Biol Eng Comput. 1980 May;18(3):287-90. (PMID: 7421309)
J Neuroeng Rehabil. 2018 Mar 13;15(1):21. (PMID: 29534764)
IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):485-96. (PMID: 18990652)
Front Neurorobot. 2016 Sep 07;10:9. (PMID: 27656140)
IEEE Trans Biomed Eng. 2011 Mar;58(3):681-8. (PMID: 20729161)
IEEE Trans Biomed Eng. 2013 May;60(5):1250-8. (PMID: 23247839)
IEEE Trans Biomed Eng. 2008 Aug;55(8):1956-65. (PMID: 18632358)
Crit Rev Biomed Eng. 2002;30(4-6):459-85. (PMID: 12739757)
IEEE Trans Biomed Eng. 2011 Sep;58(9):2537-44. (PMID: 21659017)
J Electromyogr Kinesiol. 2014 Oct;24(5):770-7. (PMID: 25048642)
IEEE Trans Neural Syst Rehabil Eng. 2014 Nov;22(6):1198-209. (PMID: 24846649)
J Neural Eng. 2019 Jun;16(3):036015. (PMID: 30849774)
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6611-6615. (PMID: 31947357)
J Neural Eng. 2019 Apr;16(2):026003. (PMID: 30524028)
IEEE Trans Neural Syst Rehabil Eng. 2017 Jul;25(7):967-975. (PMID: 28278474)
Sci Rep. 2017 Jun 30;7(1):4437. (PMID: 28667260)
IEEE Trans Biomed Eng. 2009 Apr;56(4):1070-80. (PMID: 19272889)
IEEE Trans Neural Syst Rehabil Eng. 2007 Mar;15(1):111-8. (PMID: 17436883)
Science. 2011 Aug 12;333(6044):838-43. (PMID: 21836009)
Am J Phys Med Rehabil. 2007 Dec;86(12):977-87. (PMID: 18090439)
J Med Eng Technol. 1988 Jul-Aug;12(4):143-51. (PMID: 3057209)
Sci Rep. 2020 Oct 9;10(1):16872. (PMID: 33037253)
IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):149-57. (PMID: 23475378)
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1518-1523. (PMID: 28814035)
Sci Transl Med. 2014 Oct 8;6(257):257ps12. (PMID: 25298319)
BMC Med Inform Decis Mak. 2016 Jul 21;16 Suppl 2:78. (PMID: 27461467)
PLoS One. 2018 Sep 13;13(9):e0203835. (PMID: 30212573)
IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):522-32. (PMID: 24122566)
IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):239-46. (PMID: 22262686)
Front Neurorobot. 2018 Sep 21;12:58. (PMID: 30297994)
J Neural Eng. 2014 Dec;11(6):066013. (PMID: 25394366)
Front Neurosci. 2019 Sep 10;13:891. (PMID: 31551674)
Front Neurorobot. 2013 Oct 22;7:17. (PMID: 24155719)
Sci Rep. 2016 Nov 15;6:36571. (PMID: 27845347)
J Med Eng Technol. 2016 Jul;40(5):255-64. (PMID: 27098838)
IEEE Trans Neural Syst Rehabil Eng. 2014 May;22(3):501-10. (PMID: 23996582)
Sci Rep. 2019 May 10;9(1):7244. (PMID: 31076600)
J Neural Eng. 2019 Apr;16(2):026005. (PMID: 30523815)
J Exp Psychol. 1954 Jun;47(6):381-91. (PMID: 13174710)
IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):663-77. (PMID: 22665514)
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. (PMID: 23787338)
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1821-1831. (PMID: 28358690)
Contributed Indexing:
Keywords: Deep learning; Electromyography; Multitask learning; Online performance; Prosthetic control; Regression; Regularization; Representation learning
Entry Date(s):
Date Created: 20210216 Date Completed: 20210608 Latest Revision: 20210608
Update Code:
20240104
PubMed Central ID:
PMC7885418
DOI:
10.1186/s12984-021-00832-4
PMID:
33588868
Czasopismo naukowe
Background: Processing the surface electromyogram (sEMG) to decode movement intent is a promising approach for natural control of upper extremity prostheses. To this end, this paper introduces and evaluates a new framework which allows for simultaneous and proportional myoelectric control over multiple degrees of freedom (DoFs) in real-time. The framework uses multitask neural networks and domain-informed regularization in order to automatically find nonlinear mappings from the forearm sEMG envelope to multivariate and continuous encodings of concurrent hand- and wrist kinematics, despite only requiring categorical movement instruction stimuli signals for calibration.
Methods: Forearm sEMG with 8 channels was collected from healthy human subjects (N = 20) and used to calibrate two myoelectric control interfaces, each with two output DoFs. The interfaces were built from (I) the proposed framework, termed Myoelectric Representation Learning (MRL), and, to allow for comparisons, from (II) a standard pattern recognition framework based on Linear Discriminant Analysis (LDA). The online performances of both interfaces were assessed with a Fitts's law type test generating 5 quantitative performance metrics. The temporal stabilities of the interfaces were evaluated by conducting identical tests without recalibration 7 days after the initial experiment session.
Results: Metric-wise two-way repeated measures ANOVA with factors method (MRL vs LDA) and session (day 1 vs day 7) revealed a significant ([Formula: see text]) advantage for MRL over LDA in 5 out of 5 performance metrics, with metric-wise effect sizes (Cohen's [Formula: see text]) separating MRL from LDA ranging from [Formula: see text] to [Formula: see text]. No significant effect on any metric was detected for neither session nor interaction between method and session, indicating that none of the methods deteriorated significantly in control efficacy during one week of intermission.
Conclusions: The results suggest that MRL is able to successfully generate stable mappings from EMG to kinematics, thereby enabling myoelectric control with real-time performance superior to that of the current commercial standard for pattern recognition (as represented by LDA). It is thus postulated that the presented MRL approach can be of practical utility for muscle-computer interfaces.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies