Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Long-term adaptation of Arabidopsis thaliana to far-red light.

Tytuł:
Long-term adaptation of Arabidopsis thaliana to far-red light.
Autorzy:
Hu C; Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Nawrocki WJ; Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Croce R; Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Źródło:
Plant, cell & environment [Plant Cell Environ] 2021 Sep; Vol. 44 (9), pp. 3002-3014. Date of Electronic Publication: 2021 May 05.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Hoboken, NJ : John Wiley & Sons Ltd.
Original Publication: Oxford, UK : Blackwell Scientific Publications
MeSH Terms:
Light*
Adaptation, Physiological/*radiation effects
Arabidopsis/*radiation effects
Arabidopsis/physiology ; Chlorophyll/metabolism ; Fluorescence ; Light-Harvesting Protein Complexes/radiation effects ; Photosynthesis/radiation effects ; Photosystem I Protein Complex/radiation effects ; Photosystem II Protein Complex/radiation effects ; Plant Leaves/radiation effects ; Thylakoids/radiation effects
References:
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36. (PMID: 26124102)
J Exp Bot. 2019 Jun 28;70(12):3211-3225. (PMID: 30938447)
Planta. 1995;197(2):306-12. (PMID: 8547817)
Planta. 1977 Jan;135(2):101-7. (PMID: 24420010)
Plant Cell Physiol. 2018 Sep 1;59(9):1753-1764. (PMID: 30099525)
Biochim Biophys Acta. 2014 Jun;1837(6):734-43. (PMID: 24480388)
Front Plant Sci. 2016 Feb 17;7:105. (PMID: 26925068)
Exp Gerontol. 1973 Jun;8(3):153-5. (PMID: 4724241)
Proc Natl Acad Sci U S A. 1980 Aug;77(8):4712-6. (PMID: 16592861)
Curr Opin Chem Biol. 2013 Jun;17(3):457-61. (PMID: 23602382)
Photosynth Res. 2013 Oct;116(2-3):153-66. (PMID: 23645376)
Nat Plants. 2019 Nov;5(11):1177-1183. (PMID: 31659240)
Sci Rep. 2015 Sep 01;5:13679. (PMID: 26323786)
Photosynth Res. 2020 Sep;145(3):189-207. (PMID: 32710194)
Biochemistry. 2001 Jan 30;40(4):1029-36. (PMID: 11170425)
Photochem Photobiol Sci. 2005 Dec;4(12):1091-4. (PMID: 16307127)
Nat Plants. 2020 Aug;6(8):1044-1053. (PMID: 32661277)
J Exp Bot. 2005 Jan;56(411):347-56. (PMID: 15569703)
Plant Cell. 2011 Jul;23(7):2659-79. (PMID: 21803939)
Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13319-23. (PMID: 9789086)
Plant Cell Environ. 2012 Jun;35(6):1084-98. (PMID: 22171633)
Plant Physiol. 2020 Aug;183(4):1418-1419. (PMID: 32747490)
Science. 2014 Sep 12;345(6202):1312-7. (PMID: 25214622)
Biochem J. 2011 Oct 15;439(2):207-14. (PMID: 21707535)
Annu Rev Plant Biol. 2007;58:115-36. (PMID: 17177638)
Nature. 1970 Aug 15;227(5259):680-5. (PMID: 5432063)
Springerplus. 2013 Apr 08;2(1):148. (PMID: 23667806)
Phytochemistry. 2004 Jun;65(12):1683-92. (PMID: 15276430)
Biochim Biophys Acta. 2014 Sep;1837(9):1463-71. (PMID: 24296034)
Nat Plants. 2020 Jul;6(7):860-868. (PMID: 32572215)
PLoS One. 2014 Oct 21;9(10):e109275. (PMID: 25333270)
Photosynth Res. 2019 Dec;142(3):349-359. (PMID: 31222688)
EMBO J. 2009 Oct 7;28(19):3052-63. (PMID: 19696744)
J Photochem Photobiol B. 2014 Aug;137:116-26. (PMID: 24796250)
Photosynth Res. 2006 Sep;89(2-3):141-55. (PMID: 16969715)
FEBS J. 2008 Mar;275(6):1080-8. (PMID: 18318835)
J Cell Sci. 2013 Nov 1;126(Pt 21):4823-33. (PMID: 24144694)
Biochemistry. 2002 Jun 11;41(23):7334-43. (PMID: 12044165)
Photosynth Res. 2015 Aug;125(1-2):151-66. (PMID: 25648638)
Photosynth Res. 2010 Nov;106(1-2):33-46. (PMID: 20217232)
Plant Cell. 2012 May;24(5):1921-35. (PMID: 22623496)
Planta. 1985 Jul;164(4):487-94. (PMID: 24248221)
Photosynth Res. 2009 Mar;99(3):173-83. (PMID: 19037743)
Biochemistry (Mosc). 2016 Mar;81(3):201-12. (PMID: 27262189)
Planta. 2000 Jan;210(2):205-14. (PMID: 10664126)
Plant Physiol. 1971 Oct;48(4):407-12. (PMID: 16657809)
Proc Natl Acad Sci U S A. 1990 Oct;87(19):7502-6. (PMID: 11607105)
Plant Physiol. 2019 Apr;179(4):1479-1485. (PMID: 30670604)
Life (Basel). 2014 Dec 29;5(1):4-24. (PMID: 25551681)
Nature. 2000 Jan 27;403(6768):391-5. (PMID: 10667783)
Photosynth Res. 2019 Dec;142(3):249-264. (PMID: 31270669)
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16331-5. (PMID: 12461177)
J Exp Bot. 2010;61(1):11-24. (PMID: 19815685)
J Phys Chem B. 2013 Sep 26;117(38):11200-8. (PMID: 23534376)
Plant Cell Environ. 2021 Sep;44(9):3002-3014. (PMID: 33599977)
Science. 2018 Jun 15;360(6394):1210-1213. (PMID: 29903971)
Proc Natl Acad Sci U S A. 1986 Jun;83(12):4287-91. (PMID: 16593711)
Plant Biotechnol J. 2003 Jan;1(1):3-22. (PMID: 17147676)
Plant Physiol. 1993 May;102(1):181-190. (PMID: 12231808)
Biochim Biophys Acta. 2011 Aug;1807(8):897-905. (PMID: 21108925)
Nat Plants. 2016 Apr 04;2:16031. (PMID: 27249564)
Science. 2010 Sep 10;329(5997):1318-9. (PMID: 20724585)
Biochim Biophys Acta. 2001 Oct 30;1507(1-3):80-99. (PMID: 11687209)
Nat Plants. 2018 Feb;4(2):116-127. (PMID: 29379151)
Contributed Indexing:
Keywords: far-red light acclimation; fluorescence; light harvesting; photosynthesis; photosystems; senescence
Substance Nomenclature:
0 (Light-Harvesting Protein Complexes)
0 (Photosystem I Protein Complex)
0 (Photosystem II Protein Complex)
1406-65-1 (Chlorophyll)
Entry Date(s):
Date Created: 20210218 Date Completed: 20211207 Latest Revision: 20240403
Update Code:
20240403
PubMed Central ID:
PMC8453498
DOI:
10.1111/pce.14032
PMID:
33599977
Czasopismo naukowe
Vascular plants use carotenoids and chlorophylls a and b to harvest solar energy in the visible region (400-700 nm), but they make little use of the far-red (FR) light. Instead, some cyanobacteria have developed the ability to use FR light by redesigning their photosynthetic apparatus and synthesizing red-shifted chlorophylls. Implementing this strategy in plants is considered promising to increase crop yield. To prepare for this, a characterization of the FR light-induced changes in plants is necessary. Here, we explore the behaviour of Arabidopsis thaliana upon exposure to FR light by following the changes in morphology, physiology and composition of the photosynthetic complexes. We found that after FR-light treatment, the ratio between the photosystems and their antenna size drastically readjust in an attempt to rebalance the energy input to support electron transfer. Despite a large increase in PSBS accumulation, these adjustments result in strong photoinhibition when FR-adapted plants are exposed to light again. Crucially, FR light-induced changes in the photosynthetic membrane are not the result of senescence, but are a response to the excitation imbalance between the photosystems. This indicates that an increase in the FR absorption by the photosystems should be sufficient for boosting photosynthetic activity in FR light.
(© 2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies