Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Homoeologous exchanges in allopolyploids: how Brassica napus established self-control!

Tytuł:
Homoeologous exchanges in allopolyploids: how Brassica napus established self-control!
Autorzy:
Sourdille P; Genetics, Diversity & Ecophysiology of Cereals, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, 63000, France.
Jenczewski E; Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France.
Źródło:
The New phytologist [New Phytol] 2021 Mar; Vol. 229 (6), pp. 3041-3043.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Comment
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Brassica napus*/genetics
Self-Control*
Chromosomes, Plant ; Quantitative Trait Loci ; Recombination, Genetic
References:
Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B et al. 2014. Early allopolyploid evolution in the post‐Neolithic Brassica napus oilseed genome. Science 345: 950–953.
Culligan KM, Hays JB. 2000. Arabidopsis MutS homologs – AtMSH2, AtMSH3, AtMSH6, and a Novel AtMSH7 – form three distinct protein heterodimers with different specificities for mismatched DNA. The Plant Cell 12: 991–1002.
Gaeta RT, Pires JC, Iniguez‐Luy F, Leon E, Osborn TC. 2007. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. The Plant Cell 19: 3403–3417.
Gonzalo A, Lucas MO, Charpentier C, Sandmann G, Lloyd A, Jenczewski E. 2019. Reducing MSH4 copy number prevents meiotic crossovers between non‐homologous chromosomes in Brassica napus. Nature Communications 10: 2354.
Grandont L, Cuñado N, Coriton O, Huteau V, Eber F, Chèvre AM, Grelon M, Chelysheva L, Jenczewski E. 2014. Homoeologous chromosome sorting and progression of meiotic recombination in Brassica napus: ploidy does matter!. The Plant Cell 26: 1448–1463.
Higgins EE, Clarke WE, Howell EC, Armstrong SJ, Parkin IAP. 2018. Detecting de novo homoeologous recombination events in cultivated Brassica napus using a genome‐wide SNP array. G3: Genes|Genomes|Genetics 8: 2673.
Higgins EE, Howell EC, Armstrong SJ, Parkin IAP. 2021. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus. New Phytologist. doi: https://doi.org/10.1111/nph.16986.
Jenkins G, Rees H. 1991. Strategies of bivalent formation in allopolyploid plants. Proceedings of the Royal Society of London, Series B: Biological Sciences 243: 209–214.
Liu Z, Adamczyk K, Manzanares‐Dauleux M, Eber F, Lucas MO, Delourme R, Chevre AM, Jenczewski E. 2006. Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174: 1583–1596.
Lu K, Wei LJ, Li XL, Wang YT, Wu J, Liu M, Zhang C, Chen ZY, Xiao ZC, Jian HJ et al. 2019. Whole‐genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nature Communications 10: 1154.
Martín AC, Rey M‐D, Shaw P, Moore G. 2017. Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma 126: 669–680.
Martinez‐Perez E, Shaw P, Moore G. 2001. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411: 204–207.
Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B et al. 2007. Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175: 487–503.
Pyatnitskaya A, Borde V, De Muyt A. 2019. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 128: 181–198.
Rousseau‐Gueutin M, Morice J, Coriton O, Huteau V, Trotoux G, Nègre S, Falentin C, Deniot G, Gilet M, Eber F et al. 2017. The impact of open pollination on the structural evolutionary dynamics, meiotic behavior, and fertility of resynthesized allotetraploid Brassica napus L. G3 7: 705–717.
Serra H, Svačina R, Baumann U, Whitford R, Sutton T, Bartoš J, Sourdille P. 2021. Ph2 encodes the mismatch repair protein MSH7‐3D that inhibits wheat homoeologous recombination. Nature Communications. https://doi.org/10.1038/s41467‐021‐21127‐1.
Szadkowski E, Eber F, Huteau V, Lode M, Huneau C, Belcram H, Coriton O, Manzanares‐Dauleux MJ, Delourme R, King GJ et al. 2010. The first meiosis of resynthesized Brassica napus, a genome blender. New Phytologist 186: 102–112.
Xiong Z, Pires JC. 2011. Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187: 37–49.
Contributed Indexing:
Keywords: Ph1; Ph2; PrBn; chromosome synapsis; crossover; homoeologous exchanges; homoeologous recombination
Entry Date(s):
Date Created: 20210222 Date Completed: 20210318 Latest Revision: 20210318
Update Code:
20240105
DOI:
10.1111/nph.17222
PMID:
33616960
Czasopismo naukowe
Comment on: New Phytol. 2021 Mar;229(6):3281-3293. (PMID: 33020949)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies