Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Association Between Central-Peripheral Blood Pressure Amplification and Structural and Functional Cardiac Properties in Children, Adolescents, and Adults: Impact of the Amplification Parameter, Recording System and Calibration Scheme.

Tytuł:
Association Between Central-Peripheral Blood Pressure Amplification and Structural and Functional Cardiac Properties in Children, Adolescents, and Adults: Impact of the Amplification Parameter, Recording System and Calibration Scheme.
Autorzy:
Díaz A; Instituto de Investigación en Ciencias de la Salud, UNICEN-CCT CONICET, 4 de Abril 618, 7000, Tandil, Buenos Aires Province, Argentina. .
Bia D; Departamento de Fisiología, Facultad de Medicina, Centro Universitario de Investigación, Innovación y Diagnóstico Arterial (CUiiDARTE), Universidad de la República, General Flores 2125, 11800, Montevideo, Uruguay.
Źródło:
High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension [High Blood Press Cardiovasc Prev] 2021 Mar; Vol. 28 (2), pp. 185-249. Date of Electronic Publication: 2021 Feb 23.
Typ publikacji:
Comparative Study; Journal Article
Język:
English
Imprint Name(s):
Publication: Auckland : Adis, Springer International
Original Publication: Milano : Editrice Kurtis s.r.l., c1992-
MeSH Terms:
Atrial Function, Left*
Blood Pressure*
Ventricular Function, Left*
Blood Pressure Determination/*standards
Heart/*physiology
Adolescent ; Adult ; Age Factors ; Aged ; Aged, 80 and over ; Blood Pressure Determination/instrumentation ; Calibration ; Child ; Cross-Sectional Studies ; Echocardiography, Doppler ; Female ; Healthy Volunteers ; Heart/diagnostic imaging ; Humans ; Male ; Middle Aged ; Oscillometry ; Predictive Value of Tests ; Reproducibility of Results ; Young Adult
References:
Kroeker EJ, Wood EH. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ Res. 1955;3:623–32. (PMID: 13270378)
Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–7. (PMID: 11641312)
Ohte N, Saeki T, Miyabe H, Sakata S, Mukai S, Hayano J, Niki K, et al. Relationship between blood pressure obtained from the upper arm with a cuff-type sphygmomanometer and central blood pressure measured with a catheter-tipped micromanometer. Heart Vessels. 2007;22:410–5. (PMID: 18044000)
Sharman JE, Avolio AP, Baulmann J, Benetos A, Blacher J, Blizzard CL, Boutouyrie P, et al. Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization. Eur Heart J. 2017;38(37):2805–12. (PMID: 281584895837446)
Salvi P, Safar ME, Labat C, Borghi C, Lacolley P, Benetos A. PARTAGE Study Investigators Heart disease and changes in pulse wave velocity and pulse pressure amplification in the elderly over 80 years: the PARTAGE Study. J Hypertens. 2010;28:2127–33. (PMID: 20634719)
McEniery CM, Franklin SS, Cockcroft JR, Wilkinson IB. Isolated systolic hypertension in young people is not spurious and should be treated: pro side of the argument. Hypertension. 2016;68:269–75. (PMID: 27324230)
Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, Roman MJ, et al. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension. 2009;54(2):375–83. (PMID: 19564542)
Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, Weber T, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens. 2016;34(7):1237–48. (PMID: 27136312)
Hope SA, Meredith IT, Cameron JD. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics. Clin Sci (Lond). 2004;107:205–11. (PMID: 15139848)
Papaioannou TG, Lekakis JP, Karatzis EN, Papamichael CM, Stamatelopoulos KS, Protogerou AD, Mavrikakis M, et al. Transmission of calibration errors (input) by generalized transfer functions to the aortic pressures (output) at different hemodynamic states. Int J Cardiol. 2006;110:46–52. (PMID: 16229910)
Nakagomi A, Okada S, Shoji T, Kobayashi K. Crucial effect of calibration methods on the association between central pulsatile indices and coronary atherosclerosis. Am J Hypertens. 2017;30:24–7. (PMID: 27633555)
Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, Kropf J, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32. (PMID: 21911710)
Wassertheurer S, Hametner B, Mayer CC, Hafez A, Negishi K, Papaioannou TG, Protogerou AD, et al. Aortic systolic pressure derived with different calibration methods: associations to brachial systolic pressure in the general population. Blood Press Monit. 2018;23(3):134–40. (PMID: 29608470)
Negishi K, Yang H, Wang Y, Nolan MT, Negishi T, Pathan F, Marwick TH, et al. Importance of calibration method in central blood pressure for cardiac structural abnormalities. Am J Hypertens. 2016;29(9):1070–6. (PMID: 27085076)
Agnoletti D, Zhang Y, Salvi P, Borghi C, Topouchian J, Safar ME, Blacher J. Pulse pressure amplification, pressure waveform calibration and clinical applications. Atherosclerosis. 2012;224(1):108–12. (PMID: 22832004)
Díaz A, Zócalo Y, Bia D. Normal percentile curves for left atrial size in healthy children and adolescents. Echocardiography. 2019;36(4):770–82. (PMID: 30801788)
Diaz A, Zócalo Y, Bia D, Wray S, Fischer EC. Reference intervals and percentiles for carotid femoral pulse wave velocity in a healthy population aged between 9 and 87 years. J Clin Hypertens (Greenwich). 2018;20(4):659–71.
Diaz A, Zócalo Y, Bia D. Reference intervals and percentile curves of echocardiographic left ventricular mass, relative wall thickness and ejection fraction in healthy children and adolescents. Pediatr Cardiol. 2018;40(2):283–301. (PMID: 30288599)
Díaz A, Bia D, Zócalo Y. Impact of methodological and calibration approach on the association of Central and peripheral systolic blood pressure with cardiac structure and function in children, adolescents and adults. High Blood Press Cardiovasc Prev. 2019;26(6):509–34. (PMID: 31667753)
Stang J, Story M. Chapter 1: Adolescent growth and development. In: Stang J, Story (eds) Guidelines for adolescent nutrition services. 2005. https://www.epi.umn.edu/let/pubs/adol_book.shtm . Accessed 1 June 2020.
Stützle W, Gasser T, Molinari L, Largo RH, Prader A, Huber PJ. Shape-invariant modelling of human growth. Ann Hum Biol. 1980;7(6):507–28. (PMID: 7212638)
Sawyer SM, Azzopardi PS, Wickremarathne D, Patton GC. The age of adolescence. Lancet Child Adolesc Health. 2018;2(3):223–8. (PMID: 30169257)
WHO Global recommendations on physical activity for health. World Health Organization. 2010.  https://www.who.int/dietphysicalactivity/factsheet_recommendations/en/ . Accessed 1 June 2020.
Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, Invitti C, et al. European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887–920. (PMID: 27467768)
Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, Christiaens T, et al. ESH/ESC Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;2013(31):1281–357.
Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–115. (PMID: 29133356)
Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, et al. European network for non-invasive investigation of large arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605. (PMID: 17000623)
Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, Lai WW, Geva T. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(5):465–95. (PMID: 20451803)
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70. (PMID: 25712077)
Orde S, Slama M, Hilton A, Yastrebov K, McLean A. Pearls and pitfalls in comprehensive critical care echocardiography. Crit Care. 2017;21(1):279. https://doi.org/10.1186/s13054-017-1866-z . (PMID: 10.1186/s13054-017-1866-z291498635693549)
Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation. 1984;70:425–31. (PMID: 6744546)
Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8. (PMID: 2936235)
Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, Cziraki A, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26(3):523–8. (PMID: 18300864)
Horváth IG, Németh A, Lenkey Z, Alessandri N, Tufano F, Kis P, Gaszner B, et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28(10):2068–75. (PMID: 20651604)
Zahnd G, Kapellas K, van Hattem M, van Dijk A, Sérusclat A, Moulin P, van der Lugt A, et al. A fully-automatic method to segment the carotid artery layers in ultrasound imaging—application to quantify the compression-decompression pattern of the intima-media complex during the cardiac cycle. Ultrasound Med Biol. 2017;43(1):239–57. (PMID: 27742139)
Zahnd G, Orkisz M, Vray D. CAROLAB. 2017. https://doi.org/10.5281/zenodo.398680 .
Vermeersch SJ, Rietzschel ER, De Buyzere ML, De Bacquer D, De Backer G, Van Bortel LM, Gillebert TC, et al. Determining carotid artery pressure from scaled diameter waveforms: comparison and validation of calibration techniques in 2026 subjects. Physiol Meas. 2008;29(11):1267–80. (PMID: 18843161)
Zócalo Y, Bia D, Armentano RL, González-Moreno J, Varela G, Calleriza F, Reyes-Caorsi W. Resynchronization improves heart-arterial coupling reducing arterial load determinants. Europace. 2013;15(4):554–65. (PMID: 23143859)
Wojciechowska W, Li Y, Stolarz-Skrzypek K, Kawecka-Jaszcz K, Staessen JA, Wang JG. European Project on Genes in Hypertension and the JingNing Study Investigators. Cross-sectional and longitudinal assessment of arterial stiffening with age in European and Chinese populations. Front Physiol. 2012;3:209. (PMID: 227153303375628)
Nakagomi A, Shoji T, Okada S, Ohno Y, Kobayashi Y. Validity of the augmentation index and pulse pressure amplification as determined by the SphygmoCor XCEL device: a comparison with invasive measurements. Hypertens Res. 2018;41(1):27–32. (PMID: 28978987)
Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, Salvi P, Safar ME, et al. Pulse pressure amplification a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol. 2010;55:1032–7. (PMID: 20202520)
Pichler G, Martinez F, Vicente A, Solaz E, Calaforra O, Redon J. Pulse pressure amplification and its determinants. Blood Press. 2016;25(1):21–7. (PMID: 26414776)
Laurent P, Albaladejo P, Blacher J, Rudnichi A, Smulyan H, Safar ME. Heart rate and pulse pressure amplification in hypertensive subjects. Am J Hypertens. 2003;16:363–70. (PMID: 12745197)
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104. (PMID: 30165516)
Manios E, Vemmos K, Tsivgoulis G, Barlas G, Koroboki E, Spengos K, Zakopoulos N. Comparison of noninvasive oscillometric and intra-arterial blood pressure measurements in hyperacute stroke. Blood Press Monit. 2007;12:149–56. (PMID: 17496464)
Umana E, Ahmed W, Fraley MA, Alpert MA. Comparison of oscillometric and intraarterial systolic and diastolic blood pressures in lean, overweight, and obese patients. Angiology. 2006;57:41–5. (PMID: 16444455)
Kobayashi H, Kinou M, Takazawa K. Correlation between the brachial blood pressure values obtained using the cuff method and the central blood pressure values obtained invasively. Intern Med. 2013;52:1675–80. (PMID: 23903498)
Cloud GC, Rajkumar C, Kooner J, Cooke J, Bulpitt CJ. Estimation of central aortic pressure by SphygmoCor requires intra-arterial peripheral pressures. Clin Sci (Lond). 2003;105:219–25. (PMID: 12710885)
Smulyan H, Sheehe PR, Safar ME. A preliminary evaluation of the mean arterial pressure as measured by cuff oscillometry. Am J Hypertens. 2008;21:166–71. (PMID: 18174881)
Salvi P, Bellasi A, Di Iorio B. Does it make sense to measure only the brachial blood pressure? Blood Purif. 2013;36(1):21–5. (PMID: 23735431)
Bai B, Teliewubai J, Lu Y, Yu S, Xiong J, Chi C, Zhou Y, et al. Comparison of pulse wave velocity and pulse pressure amplification in association with target organ damage in community-dwelling elderly: The Northern Shanghai Study. Hypertens Res. 2018;41(5):372–81. (PMID: 29535455)
Sibiya MJ, Norton GR, Booysen HL, Tade G, Libhaber CD, Ballim I, Sareli P, et al. Aortic backward waves rather than stiffness account for independent associations between pulse pressure amplification and left ventricular mass in a young to middle-aged sample. J Am Soc Hypertens. 2017;11(6):350–8. (PMID: 28645731)
Hashimoto J, Imai Y, O’Rourke MF. Indices of pulse wave analysis are better predictors of left ventricular mass reduction than cuff pressure. Am J Hypertens. 2007;20:378–84. (PMID: 17386343)
Wassertheurer S, Hametner B, Sharman J, Weber T. Systolic blood pressure amplification and waveform calibration. Hypertens Res. 2017;40(5):518. (PMID: 28100917)
Picone DS, Schultz MG, Peng X, Black JA, Dwyer N, Roberts-Thomson P, Qasem A, et al. Intra-arterial analysis of the best calibration methods to estimate aortic blood pressure. J Hypertens. 2019;37(2):307–15. (PMID: 30234775)
Papaioannou TG, Protogerou AD, Stefanadis C. What to anticipate from pulse pressure amplification. J Am Coll Cardiol. 2010;55(10):1038–40. (PMID: 20202521)
Wassertheurer S, Baumann M. Assessment of systolic aortic pressure and its association to all-cause mortality critically depends on waveform calibration. J Hypertens. 2015;33:1884–8. (PMID: 26147388)
Nakagomi A, Okada S, Shoji T, Kobayashi Y. Comparison of invasive and brachial cuff-based noninvasive measurements for the assessment of blood pressure amplification. Hypertens Res. 2017;40(3):237–42. (PMID: 27761001)
Regnault V, Thomas F, Safar ME, Osborne-Pellegrin M, Khalil RA, Pannier B, Lacolley P. Sex difference in cardiovascular risk: role of pulse pressure amplification. J Am Coll Cardiol. 2012;59:1771–7. (PMID: 225753153716253)
Wassertheurer S, Burkhardt K, Heemann U, Baumann M. Aortic to brachial pulse pressure amplification as functional marker and predictor of renal function loss in chronic kidney disease. J Clin Hypertens (Greenwich). 2014;16(6):401–5.
Benetos A, Gautier S, Labat C, Salvi P, Valbusa F, Marino F, Toulza O, et al. Mortality and cardiovascular events are best predicted by low central/peripheral pulse pressure amplification but not by high blood pressure levels in elderly nursing home subjects: the PARTAGE (Predictive Values of Blood Pressure and Arterial Stiffness in Institutionalized Very Aged Population) study. J Am Coll Cardiol. 2012;60:1503–11. (PMID: 22999729)
Safar ME, Blacher J, Pannier B, Guerin AP, Marchais SJ, Guyonvarc’h PM, London GM. Central pulse pressure and mortality in end-stage renal disease. Hypertension. 2002;39:735–8. (PMID: 11897754)
Duarte SV, de Souza RJ, Pinho JF, Dos Santos LM, Alves-Neves CM, Magalhães GS, Ribeiro-Oliveira A Jr, et al. Changes in aortic pulse wave components, pulse pressure amplification, and hemodynamic parameters of children and adolescents with type 1 diabetes. Pediatr Diabetes. 2019;20(2):202–9. (PMID: 30259609)
Zachariah JP. Pulse wave reflection in children: amplification through the lifecourse. J Hypertens. 2017;35(7):1363–5. (PMID: 285624425647582)
Contributed Indexing:
Keywords: Aortic blood pressure; Calibration; Echocardiography; Left ventricle function and structure; Non-invasive devices; Pulse pressure amplification; Systolic blood pressure amplification
Entry Date(s):
Date Created: 20210223 Date Completed: 20210406 Latest Revision: 20210406
Update Code:
20240105
DOI:
10.1007/s40292-021-00440-2
PMID:
33620672
Czasopismo naukowe
Introduction: Systolic blood pressure (SBPA) and pulse pressure amplification (PPA) were quantified using different methodological and calibration approaches to analyze (1) the association and agreement between different SBPA and PPA parameters and (2) the association between these SBPA and PPA parameters and left ventricle (LV) and atrium (LA) structural and functional characteristics.
Methods: In 269 healthy subjects, LV and LA parameters were echocardiography-derived. SBPA and PPA parameters were quantified using: (1) different equations (n = 9), (2) methodological approaches (n = 3): brachial sub-diastolic (Mobil-O-Graph®) and supra-systolic oscillometry (Arteriograph®) and aortic diameter waveform re-calibration (RCD; ultrasonography), and (3) using three different calibration schemes: systo-diastolic (SD), calculated mean (CM) and oscillometric mean (OscM).
Results: SBPA and PPA parameters obtained with different equations, techniques, and calibration schemes show a highly variable association level (negative, non-significant, and/or positive) among them. The association between SBPA and PPA with cardiac parameters were highly variable (negative, non-significant, or positive associations). Differences in BPA parameter data between approaches were more sensitive to the calibration method than to the device used. Both, SBPA and PPA obtained with brachial sub-diastolic technique and calibrated to CM or OscM showed higher levels of association with LV and LA structural characteristics.
Conclusions: Our data show that many of the parameters that assume to quantify the same phenomenon of BPA are not related to each other in the different age groups. Both, SBPA and PPA obtained with brachial sub-diastolic technique and calibrated to CM or OscM showed higher levels of association with LV and LA structural characteristics.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies