Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Conserved dual-mode gene regulation programs in higher eukaryotes.

Tytuł:
Conserved dual-mode gene regulation programs in higher eukaryotes.
Autorzy:
Lee JY; Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA.
Song J; Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78758, USA.
LeBlanc L; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
Davis I; Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA.
Kim J; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
Beck S; Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA.
Źródło:
Nucleic acids research [Nucleic Acids Res] 2021 Mar 18; Vol. 49 (5), pp. 2583-2597.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Publication: 1992- : Oxford : Oxford University Press
Original Publication: London, Information Retrieval ltd.
MeSH Terms:
Gene Expression Regulation*
Animals ; Caenorhabditis elegans/genetics ; CpG Islands ; DNA Methylation ; Drosophila melanogaster/genetics ; Epigenesis, Genetic ; Gene Expression Regulation, Plant ; Promoter Regions, Genetic ; Transcription, Genetic ; Vertebrates/genetics
References:
Nucleic Acids Res. 2019 Dec 2;47(21):11164-11180. (PMID: 31602465)
Nucleic Acids Res. 2002 Jan 1;30(1):38-41. (PMID: 11752248)
Chromosome Res. 2002;10(8):707-15. (PMID: 12575798)
Cell. 1985 Jan;40(1):91-9. (PMID: 2981636)
Elife. 2013 Feb 26;2:e00348. (PMID: 23467541)
Mol Cell Biol. 2000 Mar;20(6):2108-21. (PMID: 10688657)
Bioinformatics. 2013 Jan 1;29(1):15-21. (PMID: 23104886)
Chromosoma. 2016 Jun;125(3):361-71. (PMID: 26174338)
Nat Rev Genet. 2007 Jul;8(7):507-17. (PMID: 17549064)
Nucleic Acids Res. 1980 Apr 11;8(7):1499-504. (PMID: 6253938)
BMC Bioinformatics. 2009 Jul 27;10:232. (PMID: 19635165)
Science. 2002 Sep 27;297(5590):2232-7. (PMID: 12215653)
Genome Biol. 2009;10(3):R25. (PMID: 19261174)
Nat Commun. 2014 Nov 18;5:5490. (PMID: 25405324)
Development. 2007 Jan;134(2):223-32. (PMID: 17185323)
Genome Res. 2015 Nov;25(11):1600-9. (PMID: 26275623)
PLoS Genet. 2010 Dec 09;6(12):e1001244. (PMID: 21170310)
Nat Genet. 1994 Jul;7(3):376-82. (PMID: 7920655)
BMC Bioinformatics. 2010 Apr 01;11:165. (PMID: 20356413)
Trends Biochem Sci. 2010 Jun;35(6):323-32. (PMID: 20346678)
Genes Dev. 2011 May 15;25(10):1010-22. (PMID: 21576262)
Nat Rev Mol Cell Biol. 2009 Oct;10(10):697-708. (PMID: 19738629)
Science. 2013 Aug 9;341(6146):1237905. (PMID: 23828890)
Nature. 2008 Aug 7;454(7205):766-70. (PMID: 18600261)
Nucleic Acids Res. 2015 Aug 18;43(14):6959-68. (PMID: 26117547)
Cell Rep. 2018 May 22;23(8):2392-2404. (PMID: 29791850)
Genetics. 2017 Aug;206(4):1699-1725. (PMID: 28778878)
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. (PMID: 14500911)
Genome Res. 2013 Mar;23(3):555-67. (PMID: 23325432)
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94. (PMID: 20395551)
Nat Rev Mol Cell Biol. 2015 Nov;16(11):643-649. (PMID: 26420232)
Biochim Biophys Acta. 2000 Feb 14;1470(1):O1-8. (PMID: 10656988)
Biochem Soc Trans. 2013 Jun;41(3):727-40. (PMID: 23697932)
Cold Spring Harb Symp Quant Biol. 1993;58:777-92. (PMID: 7525149)
Nat Rev Genet. 2001 Apr;2(4):292-301. (PMID: 11283701)
PLoS Genet. 2010 Jan 22;6(1):e1000830. (PMID: 20107519)
EMBO J. 1988 Aug;7(8):2295-9. (PMID: 16453856)
Cell. 2015 Jan 15;160(1-2):204-18. (PMID: 25533783)
Genome Biol. 2008;9(9):R137. (PMID: 18798982)
Prog Mol Biol Transl Sci. 2011;101:25-104. (PMID: 21507349)
Nat Rev Genet. 2007 Jan;8(1):35-46. (PMID: 17173056)
Mol Cell. 2010 May 28;38(4):576-89. (PMID: 20513432)
Nucleic Acids Res. 2018 May 18;46(9):4382-4391. (PMID: 29529258)
BMC Genomics. 2013 Aug 30;14:593. (PMID: 24001316)
EMBO J. 2011 Jun 21;30(14):2817-28. (PMID: 21694722)
Elife. 2014 Sep 26;3:e03397. (PMID: 25259796)
PLoS Biol. 2003 Oct;1(1):E14. (PMID: 14551911)
PLoS Comput Biol. 2009 Dec;5(12):e1000598. (PMID: 20011106)
Curr Opin Cell Biol. 2014 Jun;28:54-60. (PMID: 24690547)
Curr Protoc Plant Biol. 2016 Sep;1(3):510-529. (PMID: 31725961)
J Mol Biol. 1987 Jul 20;196(2):261-82. (PMID: 3656447)
Cell. 2017 May 18;169(5):780-791. (PMID: 28525751)
Arabidopsis Book. 2010;8:e0128. (PMID: 22303254)
Nature. 2006 May 18;441(7091):349-53. (PMID: 16625203)
Nat Genet. 2000 Oct;26(2):195-7. (PMID: 11017076)
PLoS Genet. 2010 Sep 23;6(9):e1001134. (PMID: 20885785)
Nature. 1986 Oct 9-15;323(6088):560-4. (PMID: 3762708)
Cell Mol Life Sci. 2015 Jan;72(2):199-216. (PMID: 25227241)
PLoS Biol. 2006 May;4(5):e138. (PMID: 16623600)
FEBS J. 2019 Jul;286(13):2490-2504. (PMID: 30941832)
Development. 2015 Sep 1;142(17):2876-87. (PMID: 26329598)
Nat Rev Genet. 2011 Feb;12(2):123-35. (PMID: 21221116)
Cold Spring Harb Perspect Biol. 2013 Nov 01;5(11):a018648. (PMID: 24186071)
Plant J. 2001 Jun;26(6):617-25. (PMID: 11489175)
Grant Information:
P20 GM103423 United States GM NIGMS NIH HHS; P20 GM104318 United States GM NIGMS NIH HHS; R01 GM112722 United States GM NIGMS NIH HHS
Entry Date(s):
Date Created: 20210223 Date Completed: 20210326 Latest Revision: 20210326
Update Code:
20240105
PubMed Central ID:
PMC7969006
DOI:
10.1093/nar/gkab108
PMID:
33621342
Czasopismo naukowe
Recent genomic data analyses have revealed important underlying logics in eukaryotic gene regulation, such as CpG islands (CGIs)-dependent dual-mode gene regulation. In mammals, genes lacking CGIs at their promoters are generally regulated by interconversion between euchromatin and heterochromatin, while genes associated with CGIs constitutively remain as euchromatin. Whether a similar mode of gene regulation exists in non-mammalian species has been unknown. Here, through comparative epigenomic analyses, we demonstrate that the dual-mode gene regulation program is common in various eukaryotes, even in the species lacking CGIs. In cases of vertebrates or plants, we find that genes associated with high methylation level promoters are inactivated by forming heterochromatin and expressed in a context-dependent manner. In contrast, the genes with low methylation level promoters are broadly expressed and remain as euchromatin even when repressed by Polycomb proteins. Furthermore, we show that invertebrate animals lacking DNA methylation, such as fruit flies and nematodes, also have divergence in gene types: some genes are regulated by Polycomb proteins, while others are regulated by heterochromatin formation. Altogether, our study establishes gene type divergence and the resulting dual-mode gene regulation as fundamental features shared in a broad range of higher eukaryotic species.
(© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies