Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Bioinformatics Analysis of SARS-CoV-2 to Approach an Effective Vaccine Candidate Against COVID-19.

Tytuł:
Bioinformatics Analysis of SARS-CoV-2 to Approach an Effective Vaccine Candidate Against COVID-19.
Autorzy:
Sadat SM; Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran.
Aghadadeghi MR; Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran. .
Yousefi M; Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran.
Khodaei A; Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran.
Sadat Larijani M; Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran.
Bahramali G; Department of Hepatitis and AIDS and Blood Borne Diseases, Pasteur Institute of Iran, No: 69, Pasteur Ave, 13165, Tehran, Iran. .
Źródło:
Molecular biotechnology [Mol Biotechnol] 2021 May; Vol. 63 (5), pp. 389-409. Date of Electronic Publication: 2021 Feb 24.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
MeSH Terms:
Computational Biology*
COVID-19/*prevention & control
COVID-19 Vaccines/*immunology
SARS-CoV-2/*immunology
COVID-19/epidemiology ; Epitopes, T-Lymphocyte/immunology ; Humans ; Pandemics/prevention & control
References:
World Health Organization. (2020). WHO Coronavirus Disease (COVID-19) Dashboard. Geneva: World Health Organization.
Huang, Y., Yang, C., Xu, X.-F., Xu, W., & Liu, S.-W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. (PMID: 327477217396720)
Van Elslande, J., Decru, B., Jonckheere, S., Van Wijngaerden, E., Houben, E., Vandecandelaere, P., et al. (2020). Antibody response against SARS-CoV-2 spike protein and nucleoprotein evaluated by 4 automated immunoassays and 3 ELISAs. Clinical Microbiology and Infection, 26(11), 1557. (PMID: 327455957834107)
Turoňová, B., Sikora, M., Schürmann, C., Hagen, W. J. H., Welsch, S., Blanc, F. E. C., et al. (2020). In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, 370(6513), 203–208. (PMID: 328172707665311)
Littler, D. R., Gully, B. S., Colson, R. N., & Rossjohn, J. (2020). Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. Science, 23, 101258.
Alexpandi, R., De Mesquita, J. F., Pandian, S. K., & Ravi, A. V. (2020). Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: An in silico analysis. Frontiers in Microbiology, 11, 1796. (PMID: 327931817390959)
Cao, W., Dong, C., Kim, S., Hou, D., Tai, W., Du, L., & Im, W. (2020). Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. bioRxiv, 2020.2007.2031.230730.
Trigueiro-Louro, J., Correia, V., Figueiredo-Nunes, I., Gíria, M., & Rebelo-de-Andrade, H. (2020). Unlocking COVID therapeutic targets: A structure-based rationale against SARS-CoV-2, SARS-CoV and MERS-CoV Spike. Computational and Structural Biotechnology Journal, 18, 2117–2131. (PMID: 329135817452956)
Chakraborty, C., Sharma, A., Bhattacharya, M., Sharma, G., & Lee, S.-S. (2020). The 2019 novel coronavirus disease (COVID-19) pandemic: A zoonotic prospective. Asian Pacific Journal of Tropical Medicine, 13, 242–246.
Siu, Y. L., Teoh, K. T., Lo, J., Chan, C. M., Kien, F., Escriou, N., et al. (2008). The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. Journal of Virology, 82, 11318–11330. (PMID: 187531962573274)
Liu, D. X., Yuan, Q., & Liao, Y. (2007). Coronavirus envelope protein: A small membrane protein with multiple functions. Cellular and Molecular Life Sciences, 64, 2043–2048. (PMID: 175304627079843)
Mukherjee, S., Bhattacharyya, D., & Bhunia, A. (2020). Host-membrane interacting interface of the SARS coronavirus envelope protein: Immense functional potential of C-terminal domain. Biophysical Chemistry, 266, 106452–106452. (PMID: 328188177418743)
Astuti, I., & Ysrafil, . (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes and Metabolic Syndrome, 14, 407–412. (PMID: 32335367)
Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Journal of Virology, 16, 69.
Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., et al. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica B, 10(7), 1228–1238. (PMID: 323631367194921)
Surjit, M., & Lal, S. K. (2008). The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infection, Genetics and Evolution, 8, 397–405. (PMID: 17881296)
Amrun, S. N., Lee, C.Y.-P., Lee, B., Fong, S.-W., Young, B. E., Chee, R.S.-L., et al. (2020). Linear B-cell epitopes in the spike and nucleocapsid proteins as markers of SARS-CoV-2 exposure and disease severity. EBioMedicine, 58, 102911. (PMID: 327112547375792)
Tuttle, K. R. (2020). Impact of the COVID-19 pandemic on clinical research. Nature Reviews Nephrology, 16(10), 562–564. (PMID: 32760016)
Torreele, E. (2020). The rush to create a covid-19 vaccine may do more harm than good. BMJ, 370, m3209. (PMID: 32816760)
Prompetchara, E., Ketloy, C., & Palaga, T. (2020). Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology, 38, 1–9. (PMID: 32105090)
Moreno-Fierros, L., García-Silva, I., & Rosales-Mendoza, S. (2020). Development of SARS-CoV-2 vaccines: should we focus on mucosal immunity? Expert Opinion on Biological Therapy, 20(8), 831–836. (PMID: 32380868)
Barnard, D., Hu, M., Jones, T., Kenney, R., Burt, D., & Lowell, G. (2007). Intranasal protollin formulated recombinant SARS-CoV S protein elicits respiratory and serum neutralizing antibodies. Antiviral Research, 74, A45–A45. (PMID: 7133951)
Yang, Y., Xiao, Z., Ye, K., He, X., Sun, B., Qin, Z., et al. (2020). SARS-CoV-2: Characteristics and current advances in research. Journal of Virology, 17, 117.
Chakraborty, C., Sharma, A. R., Sharma, G., Bhattacharya, M., & Lee, S. S. (2020). SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): Diagnostic and proposed therapeutic options. European Review for Medical and Pharmacological Sciences, 24, 4016–4026. (PMID: 32329877)
Chakraborty, C., Sharma, A. R., Sharma, G., Bhattacharya, M., Saha, R. P., & Lee, S.-S. (2020). Extensive partnership, collaboration, and teamwork is required to stop the COVID-19 outbreak. Archives of Medical Research, 51, 728–730. (PMID: 325325237260497)
Amanat, F., & Krammer, F. (2020). SARS-CoV-2 vaccines: Status Report. Immunity, 52, 583–589. (PMID: 322594807136867)
Zhang, J., Zeng, H., Gu, J., Li, H., Zheng, L., & Zou, Q. (2020). Progress and prospects on vaccine development against SARS-CoV-2. Vaccines, 8, 153. (PMID: 7349596)
Chakraborty, C., Sharma, A. R., Bhattacharya, M., Sharma, G., Lee, S.-S., & Agoramoorthy, G. (2020). Consider TLR5 for new therapeutic development against COVID-19. Journal of Medical Virology, 92, 2314–2315. (PMID: 32391920)
Chakraborty, C., Sharma, A. R., Bhattacharya, M., Sharma, G., Lee, S.-S., & Agoramoorthy, G. (2020). COVID-19: Consider IL-6 receptor antagonist for the therapy of cytokine storm syndrome in SARS-CoV-2 infected patients. Journal of Medical Virology, 92, 2260–2262. (PMID: 32462717)
Saha, A., Sharma, A. R., Bhattacharya, M., Sharma, G., Lee, S.-S., & Chakraborty, C. (2020). Tocilizumab: A therapeutic option for the treatment of cytokine storm syndrome in COVID-19. Archives of Medical Research, 51, 595–597. (PMID: 324823737241374)
Bhattacharya, M., Sharma, A. R., Patra, P., Ghosh, P., Sharma, G., Patra, B. C., et al. (2020). Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. Journal of Medical Virology, 92, 618–631. (PMID: 32108359)
Chen, H., Tang, L., Yu, X., Zhou, J., Chang, Y., & Wu, X. (2020). Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2. Infectious Diseases of Poverty, 9(1), 1–10.
Kiyotani, K., Toyoshima, Y., Nemoto, K., & Nakamura, Y. (2020). Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2. Journal of Human Genetics., 65(7), 569–575. (PMID: 323720517200206)
Banerjee, S., Majumder, K., Gutierrez, G. J., Gupta, D., & Mittal, B. (2020). Immuno-informatics approach for multi-epitope vaccine designing against SARS-CoV-2. bioRxiv, 2020.2007.2023.218529.
Rakib, A., Sami, S. A., Mimi, N. J., Chowdhury, M. M., Eva, T. A., Nainu, F., et al. (2020). Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Computers in Biology and Medicine, 124, 103967. (PMID: 328280697423576)
Saha, A., Sharma, A. R., Bhattacharya, M., Sharma, G., Lee, S.-S., & Chakraborty, C. (2020). Probable molecular mechanism of remdesivir for the treatment of COVID-19: Need to know more. Archives of Medical Research, 51, 585–586. (PMID: 324391987214327)
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2008). GenBank. Nucleic Acids Research, 37, D26–D31. (PMID: 189408672686462)
Reche, P. A., Glutting, J. P., Zhang, H., & Reinherz, E. L. (2004). Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics, 56, 405–419. (PMID: 15349703)
Stranzl, T., Larsen, M. V., Lundegaard, C., & Nielsen, M. (2010). NetCTLpan: Pan-specific MHC class I pathway epitope predictions. Immunogenetics, 62, 357–368. (PMID: 203797102875469)
Giguere, S., Drouin, A., Lacoste, A., Marchand, M., Corbeil, J., & Laviolette, F. (2013). MHC-NP: Predicting peptides naturally processed by the MHC. Journal of Immunological Methods, 400–401, 30–36. (PMID: 24144535)
Abroun, S. (2010). Iran Royan Cord Blood Bank. (Royan Cord Blood Banking).
Shaiegan, M., Yari, F., Abolghasemi, H., Bagheri, N., Paridar, M., & Heidari, A. (2011). Allele frequencies of HLA-A, B and DRB1 among People of Fars Ethnicity Living in Tehran. IJBC, 3(4), 55–59.
Esmaeili, A., Rabe, S. Z. T., Mahmoudi, M., & Rastin, M. (2017). Frequencies of HLA-A, B and DRB1 alleles in a large normal population living in the city of Mashhad, Northeastern Iran. The Iranian Journal of Basic Medical Sciences, 20, 940–943. (PMID: 29085586)
Doytchinova, I. A., & Flower, D. R. (2007). Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine, 25, 856–866. (PMID: 17045707)
Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7.
Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS ONE, 8, e73957. (PMID: 240585083772798)
Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45, W24-w29. (PMID: 284723565570230)
Kolaskar, A. S., & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters, 276, 172–174. (PMID: 1702393)
Emini, E. A., Hughes, J. V., Perlow, D. S., & Boger, J. (1985). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of Virology, 55, 836–839. (PMID: 2991600255070)
Karplus, P. A., & Schulz, G. E. (1985). Prediction of chain flexibility in proteins. Naturwissenschaften, 72, 212–213.
Parker, J. M., Guo, D., & Hodges, R. S. (1986). New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry, 25, 5425–5432. (PMID: 2430611)
Chou, P. Y., & Fasman, G. D. (1978). Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology and Related Areas of Molecular Biology, 47, 45–148. (PMID: 364941)
Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514. (PMID: 190557302607291)
Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. Methods MolBiol, 112, 531–552.
Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11, 681–684. (PMID: 8808585)
Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M., & Barton, G. J. (1998). JPred: A consensus secondary structure prediction server. Bioinformatics, 14, 892–893. (PMID: 9927721)
Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40. (PMID: 182153162245901)
McGuffin, L. J., Adiyaman, R., Maghrabi, A. H. A., Shuid, A. N., Brackenridge, D. A., Nealon, J. O., et al. (2019). IntFOLD: An integrated web resource for high performance protein structure and function prediction. Nucleic Acids Research, 47, W408-w413. (PMID: 310452086602432)
Yang, Y., & Zhou, Y. (2008). Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins, 72, 793–803. (PMID: 18260109)
Laskowski, R. A., MacArthur, M., Moss, D. S., & Thornton, J. M. (1993). PROCHECK—A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(283–291), 282.
Colovos, C., & Yeates, T. (1993). Verification of protein structures: Patterns of non-bonded atomic interactions. Protein Science, 9, 1511–1519.
BowieLuthy, J. U. R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253, 164–170.
Poran, A., Harjanto, D., Malloy, M., Arieta, C. M., Rothenberg, D. A., Lenkala, D., et al. (2020). Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes. Genome Medicine, 12, 70. (PMID: 327919787425796)
Olvera, A., Noguera-Julian, M., Kilpelainen, A., Romero-Martín, L., Prado, J. G., & Brander, C. (2020). SARS-CoV-2 consensus-sequence and matching overlapping peptides design for COVID19 immune studies and vaccine development. Vaccines, 8, 444. (PMID: 7565482)
Dong, R., Chu, Z., Yu, F., & Zha, Y. (2020). Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Frontiers in Immunology, 11, 1784. (PMID: 328496437399176)
Joshi, A., Joshi, B. C., Mannan, M. A., & Kaushik, V. (2020). Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Informatics in Medicine Unlocked, 19, 100338. (PMID: 323520267189872)
Chen, H. Z., Tang, L. L., Yu, X. L., Zhou, J., Chang, Y. F., & Wu, X. (2020). Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2. Infectious Diseases of Poverty., 9(1), 1–10.
Biswajit Sahoo, K. K., Rai, N. K., & Chaudhary, D. K. (2020). Identification of T-cell epitopes in proteins of novel human coronavirus, SARS-Cov-2 for vaccine development. International Journal of Applied Biology and Pharmaceutical Technology, 11, 37–45.
Grant Information:
1159 Pasteur Institute of Iran
Contributed Indexing:
Keywords: COVID-19; In silico; Protein; SARS-CoV-2; Vaccine design
Substance Nomenclature:
0 (COVID-19 Vaccines)
0 (Epitopes, T-Lymphocyte)
Entry Date(s):
Date Created: 20210224 Date Completed: 20210510 Latest Revision: 20210510
Update Code:
20240105
PubMed Central ID:
PMC7902242
DOI:
10.1007/s12033-021-00303-0
PMID:
33625681
Czasopismo naukowe
The emerging Coronavirus Disease 2019 (COVID-19) pandemic has posed a serious threat to the public health worldwide, demanding urgent vaccine provide. According to the virus feature as an RNA virus, a high rate of mutations imposes some vaccine design difficulties. Bioinformatics tools have been widely used to make advantage of conserved regions as well as immunogenicity. In this study, we aimed at immunoinformatic evaluation of SARS-CoV-2 proteins conservancy and immunogenicity to design a preventive vaccine candidate. Spike, Membrane and Nucleocapsid amino acid sequences were obtained, and four possible fusion proteins were assessed and compared in terms of structural features and immunogenicity, and population coverage. MHC-I and MHC-II T-cell epitopes, the linear and conformational B-cell epitopes were evaluated. Among the predicted models, the truncated form of Spike in fusion with M and N protein applying AAY linker has high rate of MHC-I and MCH-II epitopes with high antigenicity and acceptable population coverage of 82.95% in Iran and 92.51% in Europe. The in silico study provided truncated Spike-M-N SARS-CoV-2 as a potential preventive vaccine candidate for further in vivo evaluation.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies