Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Type I and type V procollagen triple helix uses different subsets of the molecular ensemble for lysine posttranslational modifications in the rER.

Tytuł:
Type I and type V procollagen triple helix uses different subsets of the molecular ensemble for lysine posttranslational modifications in the rER.
Autorzy:
Ishikawa Y; Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA; Research Department, Shriners Hospital for Children, Portland, Oregon, USA; Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA. Electronic address: .
Taga Y; Nippi Research Institute of Biomatrix, Ibaraki, Japan.
Zientek K; Research Department, Shriners Hospital for Children, Portland, Oregon, USA.
Mizuno N; Research Department, Shriners Hospital for Children, Portland, Oregon, USA.
Salo AM; Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
Semenova O; Research Department, Shriners Hospital for Children, Portland, Oregon, USA.
Tufa SF; Research Department, Shriners Hospital for Children, Portland, Oregon, USA.
Keene DR; Research Department, Shriners Hospital for Children, Portland, Oregon, USA.
Holden P; Research Department, Shriners Hospital for Children, Portland, Oregon, USA.
Mizuno K; Nippi Research Institute of Biomatrix, Ibaraki, Japan.
Gould DB; Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA; Department of Anatomy, University of California, San Francisco, School of Medicine, San Francisco, California USA.
Myllyharju J; Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
Bächinger HP; Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA.
Źródło:
The Journal of biological chemistry [J Biol Chem] 2021 Jan-Jun; Vol. 296, pp. 100453. Date of Electronic Publication: 2021 Feb 23.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2021- : [New York, NY] : Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology
Original Publication: Baltimore, MD : American Society for Biochemistry and Molecular Biology
MeSH Terms:
Collagen Type I/*metabolism
Collagen Type V/*metabolism
Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/*metabolism
Procollagen-Proline Dioxygenase/*metabolism
Animals ; Collagen/genetics ; Collagen/metabolism ; Collagen Type I/genetics ; Collagen Type V/genetics ; Endoplasmic Reticulum, Rough/metabolism ; Hydroxylation ; Hydroxylysine/metabolism ; Lysine/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Procollagen-Proline Dioxygenase/genetics ; Protein Conformation ; Protein Processing, Post-Translational/genetics
References:
J Biol Chem. 2003 Sep 12;278(37):34966-74. (PMID: 12824157)
Mol Cell Proteomics. 2007 Sep;6(9):1638-55. (PMID: 17533153)
J Biol Chem. 2013 Aug 23;288(34):24742-52. (PMID: 23861401)
DNA Cell Biol. 2000 Feb;19(2):71-7. (PMID: 10701773)
Curr Opin Struct Biol. 2019 Jun;56:131-138. (PMID: 30822656)
J Bone Miner Res. 2017 Jun;32(6):1309-1319. (PMID: 28177155)
J Biol Chem. 2008 Jul 25;283(30):21187-97. (PMID: 18487200)
Essays Biochem. 2012;52:113-33. (PMID: 22708567)
J Biol Chem. 2007 Mar 2;282(9):6588-96. (PMID: 17197443)
Nat Biotechnol. 2014 Mar;32(3):223-6. (PMID: 24727771)
J Biol Chem. 2012 Jun 22;287(26):22253-65. (PMID: 22556420)
J Biol Chem. 2017 Mar 3;292(9):3877-3887. (PMID: 28115524)
Subcell Biochem. 2017;82:457-490. (PMID: 28101870)
PLoS Genet. 2009 Dec;5(12):e1000750. (PMID: 19997487)
J Cell Sci. 2006 Feb 15;119(Pt 4):625-35. (PMID: 16467571)
Mol Genet Metab. 2000 Sep-Oct;71(1-2):212-24. (PMID: 11001813)
Nat Rev Dis Primers. 2020 Jul 30;6(1):64. (PMID: 32732924)
J Biol Chem. 2016 Jan 8;291(2):837-47. (PMID: 26567337)
ACS Chem Biol. 2016 May 20;11(5):1408-21. (PMID: 26848503)
Nat Rev Mol Cell Biol. 2017 May;18(5):285-298. (PMID: 28225081)
Biochemistry. 1973 Aug 28;12(18):3395-401. (PMID: 4354367)
J Biol Chem. 2008 Jul 11;283(28):19432-9. (PMID: 18487197)
Methods Mol Biol. 2008;446:95-108. (PMID: 18373252)
J Proteome Res. 2014 Aug 1;13(8):3671-8. (PMID: 24953783)
PLoS Genet. 2016 Apr 27;12(4):e1006002. (PMID: 27119146)
Eur J Hum Genet. 2009 Dec;17(12):1560-9. (PMID: 19550437)
PLoS Genet. 2014 Jun 26;10(6):e1004465. (PMID: 24968150)
Methods. 2008 May;45(1):65-74. (PMID: 18442706)
Biochim Biophys Acta. 2015 Oct;1850(10):1983-93. (PMID: 25583561)
Hum Mol Genet. 2010 Jan 15;19(2):223-34. (PMID: 19846465)
Pathol Biol (Paris). 2005 Sep;53(7):430-42. (PMID: 16085121)
Cell Tissue Res. 2010 Jan;339(1):59-70. (PMID: 19862557)
PLoS Genet. 2019 Jun 7;15(6):e1008196. (PMID: 31173582)
Biochem Biophys Res Commun. 1980 Oct 31;96(4):1778-84. (PMID: 6778480)
Cell Mol Life Sci. 2019 Oct;76(19):3899-3914. (PMID: 30993352)
J Biol Chem. 2016 Apr 29;291(18):9501-12. (PMID: 26934917)
Trends Cell Biol. 2018 Jun;28(6):420-435. (PMID: 29602697)
Structure. 2017 Sep 5;25(9):1415-1422.e3. (PMID: 28877505)
Traffic. 2016 Jun;17(6):615-38. (PMID: 26947578)
Sci Rep. 2020 Jan 16;10(1):497. (PMID: 31949249)
J Invest Dermatol. 1984 Sep;83(3):161-5. (PMID: 6432919)
J Cell Physiol. 2007 Aug;212(2):323-9. (PMID: 17516569)
J Biol Chem. 2004 May 28;279(22):23615-21. (PMID: 15044469)
Biochemistry. 1981 Jul 21;20(15):4321-4. (PMID: 7284327)
J Biol Chem. 2002 Feb 22;277(8):6178-82. (PMID: 11751879)
J Mol Biol. 2003 Aug 1;331(1):191-200. (PMID: 12875845)
PLoS One. 2011 May 03;6(5):e19336. (PMID: 21559283)
Int J Mol Sci. 2010 Jan 28;11(2):407-26. (PMID: 20386646)
Matrix Biol. 2016 May-Jul;52-54:7-18. (PMID: 26772152)
J Biol Chem. 2012 Nov 23;287(48):40598-610. (PMID: 23060441)
Biochim Biophys Acta. 2013 Nov;1833(11):2479-91. (PMID: 23602968)
Crit Rev Biochem Mol Biol. 2017 Feb;52(1):74-95. (PMID: 28006962)
Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):8-26. (PMID: 28306229)
Nucleic Acids Res. 2017 Jan 4;45(D1):D1107-D1111. (PMID: 27899654)
J Biol Chem. 2003 Aug 22;278(34):32373-9. (PMID: 12807876)
Annu Rev Biochem. 1984;53:717-48. (PMID: 6148038)
Lancet. 2016 Apr 16;387(10028):1657-71. (PMID: 26542481)
Nat Rev Dis Primers. 2017 Aug 18;3:17052. (PMID: 28820180)
J Biol Chem. 2009 Nov 6;284(45):30917-24. (PMID: 19762917)
Nat Commun. 2018 Aug 8;9(1):3163. (PMID: 30089812)
Matrix Biol. 2018 Oct;71-72:380-395. (PMID: 29709596)
Matrix Biol. 2007 Jun;26(5):396-403. (PMID: 17289364)
Mol Cell Proteomics. 2012 Jun;11(6):M111.010397. (PMID: 22247541)
Grant Information:
R01 NS096173 United States NS NINDS NIH HHS
Contributed Indexing:
Keywords: collagen; endoplasmic reticulum; lysyl hydroxylase; molecular chaperone; posttranslational modifications; prolyl hydroxylase
Substance Nomenclature:
0 (Collagen Type I)
0 (Collagen Type V)
2GQB349IUB (Hydroxylysine)
9007-34-5 (Collagen)
EC 1.14.11.2 (Procollagen-Proline Dioxygenase)
EC 1.14.11.4 (Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase)
EC 1.14.11.7 (proline, 2-oxoglutarate 3-dioxygenase)
K3Z4F929H6 (Lysine)
Entry Date(s):
Date Created: 20210225 Date Completed: 20210830 Latest Revision: 20210830
Update Code:
20240105
PubMed Central ID:
PMC7988497
DOI:
10.1016/j.jbc.2021.100453
PMID:
33631195
Czasopismo naukowe
Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.
Competing Interests: Conflict of interest The authors declare that they have no competing interests related to this work.
(Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies