Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Analysis of mitochondrial recombination in the male sterile Brassica juncea cybrid Og1 and identification of the molecular basis of fertility reversion.

Tytuł:
Analysis of mitochondrial recombination in the male sterile Brassica juncea cybrid Og1 and identification of the molecular basis of fertility reversion.
Autorzy:
Vasupalli N; ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
Kumar V; ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
Bhattacharya R; ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
Bhat SR; ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India. .
Źródło:
Plant molecular biology [Plant Mol Biol] 2021 May; Vol. 106 (1-2), pp. 109-122. Date of Electronic Publication: 2021 Feb 27.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Dordrecht : Kluwer Academic
Original Publication: The Hague ; Boston : Martinus Nijhoff/Dr. W. Junk, 1981-
MeSH Terms:
Recombination, Genetic*
Mitochondria/*genetics
Mustard Plant/*genetics
Mustard Plant/*physiology
Plant Infertility/*genetics
DNA, Mitochondrial/genetics ; Fertility/genetics ; Gene Expression Regulation, Plant ; Genes, Mitochondrial ; Genome, Mitochondrial ; Genome, Plant ; Polymorphism, Restriction Fragment Length
References:
Alverson AJ, Rice DW, Dickinson S, Bary K, Palmer JD (2011) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell 23:2499–2513. https://doi.org/10.1105/tpc.111.087189. (PMID: 10.1105/tpc.111.087189217429873226218)
Bellaoui M, Martin-Canadell A, Pelletier G, Budar F (1998) Low-copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol Gen Genet 257:177–185. https://doi.org/10.1007/s004380050637. (PMID: 10.1007/s0043800506379491076)
Bonhomme S, Budar F, Férault M, Pelletier G (1991) A 2.5 kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids. Curr Genet 19:121–127. https://doi.org/10.1007/BF00326293. (PMID: 10.1007/BF00326293)
Bonhomme S, Budar F, Lancelin D, Small I, Defrance M-C, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet 235:340–348. https://doi.org/10.1007/BF00279379. (PMID: 10.1007/BF002793791281515)
Chang S, Yang TT, Du TQ, Huang YQ, Chen JM, Yan LY, He LB, Guan RZ (2011) Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genomics 12:479. https://doi.org/10.1186/1471-2164-12-497. (PMID: 10.1186/1471-2164-12-497)
Chen J, Guan R, Chang S, Du T, Zhang H, Xing H (2011) Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS ONE 6(3):e17662. https://doi.org/10.1371/journal.pone.0017662. (PMID: 10.1371/journal.pone.0017662214237003053379)
Chen Z, Zhao N, Li S, Grover CE, Nie H, Wendel JF, Hua J (2017) Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit Rev Plant Sci 36:55–69. https://doi.org/10.1080/07352689.2017.1327762. (PMID: 10.1080/07352689.2017.1327762)
Dudareva NA, Veprev SG, Popovsky AV, Maletsky SI, Gileva IP, Salganik RI (1990) High-rate spontaneous reversion to cytoplasmic male sterility in sugar beet: a characterization of the mitochondrial genomes. Theor Appl Genet 79:817–824. https://doi.org/10.1007/BF00224251. (PMID: 10.1007/BF0022425124226745)
Earle ED, Gracen VE, Best VM, Batts LA, Smith ME (1987) Fertile revertants from S-type male sterile maize grown in vitro. Theor Appl Genet 74:601–609. https://doi.org/10.1007/BF00288859. (PMID: 10.1007/BF0028885924240216)
Elkonin LA, Kozhemyakin VV, Ishin AG (2005) Influence of water availability on fertility restoration of CMS lines with the ‘M35’, A4 and ‘9E’ CMS-inducing cytoplasms of sorghum. Plant Breed 134:565–571. https://doi.org/10.1111/j.1439-0523.2005.01160.x. (PMID: 10.1111/j.1439-0523.2005.01160.x)
Fauron CM, Havlik M, Brettell RI (1990) The mitochondrial genome organization of a maize fertile CMS-T revertant line is generated through recombination between two sets of repeats. Genetics 124:423–428. (PMID: 10.1093/genetics/124.2.423)
Feng X, Kaur AP, Mackenzie SA, Dweikat IM (2009) Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theor Appl Genet 118:1361–1370. https://doi.org/10.1007/s00122-009-0986-5. (PMID: 10.1007/s00122-009-0986-519234685)
Garcia LE, Zubko MK, Zubko EI, Sanchez-Puerta MV (2019) Elucidating genomic patterns and recombination events in plant cybrid mitochondria. Plant Mol Biol. https://doi.org/10.1007/s11103-019-00869-z. (PMID: 10.1007/s11103-019-00869-z30968307)
Gourret J-P, Delourme R, Renard M (1992) Expression of cytoplasmic male sterility in cybrids of Brassica napus. Theor Appl Genet 83:549–556. https://doi.org/10.1007/BF00226898. (PMID: 10.1007/BF0022689824202671)
Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A (2014) The plant mitochondrial genome: dynamics and maintenance. Biochemie 100:107–120. https://doi.org/10.1016/j.biochi.2013.09.016. (PMID: 10.1016/j.biochi.2013.09.016)
Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180. https://doi.org/10.1105/tpc.10.7.1163. (PMID: 10.1105/tpc.10.7.1163)
Kirti PB, Banga SS, Prakash S, Chopra VL (1995a) Transfer of Ogu cytoplasmic male sterility to Brassica junceaand improvement of male sterile line through somatic cell fusion. Theor Appl Genet 91:517–521. https://doi.org/10.1007/BF00222982. (PMID: 10.1007/BF0022298224169844)
Kirti PB, Mohapatra T, Khanna H, Prakash S, Chopra VL (1995b) Diplotaxis catholica + Brassica juncea somatic hybrids: molecular and cytogenetic characterization. Plant Cell Rep 14:593–597. https://doi.org/10.1007/BF00231945. (PMID: 10.1007/BF0023194524185604)
Kubo T, Kitazaki K, Matsunaga M, Kagami H, Mikami T (2013) Male sterility-inducing mitochondrial genomes: how do they differ? Crit Rev Plant Sci 30:378–400. https://doi.org/10.1080/07352689.2011.587727. (PMID: 10.1080/07352689.2011.587727)
Mackenzie SA, Pring DR, Bassett MJ, Chase CD (1988) Mitochondrial DNA rearrangement associated with fertility restoration and cytoplasmic reversion to fertility in cytoplasmic male sterile Phaseolus vulgaris L. Proc Natl Acad Sci USA 85:2714–2717. https://doi.org/10.1073/pnas.85.8.2714. (PMID: 10.1073/pnas.85.8.271416593926)
Muer G, Gaikwad K, Bhat SR, Prakash S, Kirti PB (2006) Homeotic-like modification of stamen to petals is associated with aberrant mitochondrial gene expression in cytoplasmic male sterile Ogura Brassica juncea. J Genet 85:133–139. (PMID: 10.1007/BF02729019)
Nawa S, Sano Y, Yamada M-A, Fujii T (1987) Cloning of the plasmids in cytoplasmic male sterile rice and changes of organization of mitochondrial and nuclear DNA in cytoplasmic reversion. Jpn J Genet 62:301–314. (PMID: 10.1266/jjg.62.301)
Newton KJ (1988) Plant mitochondrial genomes: organization, expression and variation. Annu Rev Plant Biol 39:503–532. https://doi.org/10.1146/annurev.pp.39.060188.002443. (PMID: 10.1146/annurev.pp.39.060188.002443)
Pathania A, Bhat SR, Dinesh Kumar V, Ashutosh, Kirti PB, Prakash S, Chopra VL (2003) Cytoplasmic male sterility in alloplasmic Brassica juncea carrying Diplotaxis catholica cytoplasm: molecular characterization and genetics of fertility restoration. Theor Appl Genet 107:455–161. https://doi.org/10.1007/s00122-003-1266-4. (PMID: 10.1007/s00122-003-1266-412968615)
Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:244–250. https://doi.org/10.1007/BF00334821. (PMID: 10.1007/BF00334821)
Sanchez-Puerta MV, Zhubko MK, Plamer JD (2015) Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. New Phytol 206:381–396. https://doi.org/10.1111/nph.13188. (PMID: 10.1111/nph.1318825441621)
Shen J, Zhang Y, Harvey MJ, Shou W (2019) Copy number of mitochondrial genes change during melon leaf development and are lower than the number of mitochondria. Hortic Res 6:95. https://doi.org/10.1038/s41438-019-0177-8. (PMID: 10.1038/s41438-019-0177-8316459536804604)
Sloan DB (2013) One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytol 200:978–998. https://doi.org/10.1111/nph.12395. (PMID: 10.1111/nph.1239524712049)
Small ID, Earle ED, Escote-Carlson LJ, Gabay-Laughnan S, Laughnan JR, Leaver CJ (1988) A comparison of cytoplasmic revertants to fertility from different CMS-S maize sources. Theor Appl Genet 76:609–618. https://doi.org/10.1007/BF00260916. (PMID: 10.1007/BF0026091624232284)
Smith RL, Chowdhury MKU (1991) Characterization of pearl millet mitochondrial DNA fragments rearranged by reversion from cytoplasmic male sterility to fertility. Theor Appl Genet 81:793–799. https://doi.org/10.1007/BF00224992. (PMID: 10.1007/BF0022499224221443)
Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T (2012) A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genomics 13:352. https://doi.org/10.1186/1471-2164-13-352. (PMID: 10.1186/1471-2164-13-352228465963473294)
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017) GeSeq—versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45:W6–W11. https://doi.org/10.1093/nar/gkx391. (PMID: 10.1093/nar/gkx39155701765570176)
Vasupalli N, Rao KRSS, Bhat SR (2017) Molecular characterization reveals chlorosis-corrected CMS (Brassica oxyrrhina) B. juncea cybrid has recombinant mitochondrial genome involving male sterility inducing orf108-atpA gene. Indian J Genet Plant Breed 77:99–104. https://doi.org/10.5958/0975-6906.2017.00013.X. (PMID: 10.5958/0975-6906.2017.00013.X)
Wang J, Jiang J, Li X, Li A, Zhang Y, Guan R, Wang Y (2012) Complete sequence of heterogenous-composition mitochondrial genome (Brassica napus) and its exogenous source. BMC Genomics 13:675. https://doi.org/10.1186/1471-2164-13-675. (PMID: 10.1186/1471-2164-13-675231905593561098)
Yamagishi H, Bhat SR (2014) Cytoplasmic male sterility in Brassicaceae crops. Breed Sci 64:38–47. https://doi.org/10.1270/jsbbs.64.38. (PMID: 10.1270/jsbbs.64.38)
Zabala G, Gabay-Laughnan S, Laughnan JR (1997) The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147:847–860. (PMID: 10.1093/genetics/147.2.847)
Contributed Indexing:
Keywords: Brassica; Cytoplasmic male sterility; Fertility reversion; Mitochondrial recombination; RFLP; Stoichiometry
Substance Nomenclature:
0 (DNA, Mitochondrial)
Entry Date(s):
Date Created: 20210227 Date Completed: 20210429 Latest Revision: 20220422
Update Code:
20240105
DOI:
10.1007/s11103-021-01132-0
PMID:
33638768
Czasopismo naukowe
Key Message: Recombinations between the parental genomes produced a novel mitochondrial genome in the cytoplasmic male sterile Brassica juncea cybrid Og1. A mitochondrial stoichiometric shift greatly reduced the molecule containing male-sterility-inducing orf138 gene leading to reversion to male fertility. An improved, chlorosis-corrected, cytoplasmic male sterile Brassica juncea cybrid Og1 derived from Ogura cytoplasm shows frequent reversion to male fertility. To determine the nature of mitochondrial recombination in the cybrid and to uncover the molecular mechanism of male fertility reversion, we sequenced the mitochondrial genomes of Og1, its isonuclear parental lines (OgRLM and Brassica juncea RLM198) and the revertant line (Og1-rt). Assembly of Og1 mitochondrial genome gave two circular molecules, Og1a (250.999 kbp) and Og1b (96.185 kbp) sharing two large direct repeat regions capable of recombining to form a single circular molecule. Og1a contains all essential mitochondrial genes, but the male-sterility-causing orf138 was uniquely present in Og1b along with 16 other complete or partial genes already represented in Og1a. Eleven and four recombinations between the parental mitochondrial genomes produced the Og1a and the Og1b molecules, respectively. Five genes were duplicated within Og1a, of which trnfM was inherited from both the parents while the other four genes, atp4, cox1 nad4L and trnM, were inherited from RLM198. RFLP analysis revealed that orf138-containing molecules were less abundant than Og1a in the male-sterile plants while og1b bearing molecules were undetectable in the revertant line. However, orf138 transcripts were amplified in RT-PCR and were also detected in northern blots revealing that Og1b molecules are not completely lost in the revertant plants. This is the first report where the mitochondrial genome of a cybrid is compared with its actual parents. The findings are discussed in the light of previous reports on mitochondrial genome recombination in cybrids.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies