Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Construction of a chromosome-level genome and variation map for the Pacific oyster Crassostrea gigas.

Tytuł:
Construction of a chromosome-level genome and variation map for the Pacific oyster Crassostrea gigas.
Autorzy:
Qi H; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
Li L; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
Zhang G; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
Źródło:
Molecular ecology resources [Mol Ecol Resour] 2021 Jul; Vol. 21 (5), pp. 1670-1685. Date of Electronic Publication: 2021 Apr 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Oxford, England : Blackwell
MeSH Terms:
Chromosome Mapping*
Crassostrea*/genetics
Genome*
Animals ; Chromosomes ; DNA Copy Number Variations ; INDEL Mutation ; Polymorphism, Single Nucleotide
References:
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.
Altshuler, D. M., Durbin, R. M., Abecasis, G. R., Bentley, D. R., Chakravarti, A., Clark, A. G., Donnelly, P., Eichler, E. E., Flicek, P., Gabriel, S. B., Gibbs, R. A., Green, E. D., Hurles, M. E., Knoppers, B. M., Korbel, J. O., Lander, E. S., Lee, C., Lehrach, H., Mardis, E. R., … Genovese, G. 2015). A global reference for human genetic variation. Nature, 526, 68-74.
Bailey, J. A., Church, D. M., Ventura, M., Rocchi, M., & Eichler, E. E. (2004). Analysis of segmental duplications and genome assembly in the mouse. Genome Research, 14, 789-801.
Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J., & Eichler, E. E. (2001). Segmental duplications: Organization and impact within the current Human Genome Project assembly. Genome Research, 11, 1005-1017.
Bayne, B. L. (2017). Biology of oysters. Academic Press.
Benoit, M. (2020). On the importance of variation: a high-resolution map of copy number variants in Arabidopsis. The Plant Cell, 32, 1771-1772.
Benson, G. (1999). tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 27, 573-580.
Cabanettes, F., & Klopp, C. (2018). d-genies: Dot plot large genomes in an interactive, efficient and simple way. Peerj, 6.
Dallery, J.-F., Lapalu, N., Zampounis, A., Pigné, S., Luyten, I., Amselem, J., Wittenberg, A. H. J., Zhou, S., de Queiroz, M. V., Robin, G. P., Auger, A., Hainaut, M., Henrissat, B., Kim, K.-T., Lee, Y.-H., Lespinet, O., Schwartz, D. C., Thon, M. R., & O’Connell, R. J. (2017). Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics, 18, 667-688. https://doi.org/10.1186/s12864-017-4083-x.
Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., & Aiden, E. L. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 356, 92-95.
Durand, N. C., Shamim, M. S., Machol, I., Rao, S. S. P., Huntley, M. H., Lander, E. S., & Aiden, E. L. (2016). Juicer Provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems, 3, 95-98.
Edgar, R. C. (2004). muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.
Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1), 238-251. https://doi.org/10.1186/s13059-019-1832-y.
Escaramis, G., Docampo, E., & Rabionet, R. (2015). A decade of structural variants: Description, history and methods to detect structural variation. Briefings in Functional Genomics, 14, 305-314.
Farrer, R. A., Henk, D. A., MacLean, D., Studholme, D. J., & Fisher, M. C. (2013). Using false discovery rates to benchmark SNP-callers in next-generation sequencing projects. Scientific Reports, 3, 1512-1517. https://doi.org/10.1038/srep01512.
Fiston-Lavier, A. S., Anxolabehere, D., & Quesneville, H. (2007). A model of segmental duplication formation in Drosophila melanogaster. Genome Research, 17, 1458-1470.
Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). repeatmodeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America, 117, 9451-9457.
Gagnaire, P.-A., Lamy, J.-B., Cornette, F., Heurtebise, S., Dégremont, L., Flahauw, E., Boudry, P., Bierne, N., & Lapègue, S. (2018). Analysis of genome-wide differentiation between native and introduced populations of the cupped oysters Crassostrea gigas and Crassostrea angulata. Genome Biology and Evolution, 10, 2518-2534.
Goidts, V., Cooper, D. N., Armengol, L., Schempp, W., Conroy, J., Estivill, X., Nowak, N., Hameister, H., & Kehrer-Sawatzki, H. (2006). Complex patterns of copy number variation at sites of segmental duplications: An important category of structural variation in the human genome. Human Genetics, 120, 270-284.
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of phyml 3.0. Systematic Biology, 59, 307-321.
Gutierrez, A. P., Turner, F., Gharbi, K., Talbot, R., Lowe, N. R., Penaloza, C., & Houston, R. D. (2017). Development of a medium density combined-species SNP array for Pacific and European oysters (Crassostrea gigas and Ostrea edulis). G3-Genes Genomes Genetics, 7, 2209-2218.
Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., White, O., Buell, C. R., & Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biology, 9, R7. https://doi.org/10.1186/gb-2008-9-1-r7.
Hedgecock, D., Gaffney, P. M., Goulletquer, P., Guo, X. M., Reece, K., & Warr, G. W. (2005). The case for sequencing the Pacific oyster genome. Journal of Shellfish Research, 24, 429-441.
Hedgecock, D., Shin, G., Gracey, A. Y., Van Den Berg, D., & Samanta, M. P. (2015). Second-Generation Linkage Maps for the Pacific oyster Crassostrea gigas reveal errors in assembly of genome scaffolds. G3-Genes Genomes Genetics, 5, 2007-2019.
Hu, J. L., Zheng, Y., & Shang, X. Q. (2018). mitefinderii: A novel tool to identify miniature inverted-repeat transposable elements hidden in eukaryotic genomes. Bmc Medical Genomics, 11.
Hu, K., Xu, K., Wen, J., Yi, B., Shen, J., Ma, C., Fu, T., Ouyang, Y., & Tu, J. (2019). Helitron distribution in Brassicaceae and whole Genome Helitron density as a character for distinguishing plant species. BMC Bioinformatics, 20(1), 354-373. https://doi.org/10.1186/s12859-019-2945-8.
Keel, B. N., Nonneman, D. J., Lindholm-Perry, A. K., Oliver, W. T., & Rohrer, G. A. (2019). A survey of copy number variation in the porcine genome detected from whole-genome sequence. Frontiers in Genetics, 10, 737. https://doi.org/10.3389/fgene.2019.00737.
Keilwagen, J., Wenk, M., Erickson, J. L., Schattat, M. H., Grau, J., & Hartung, F. (2016). Using intron position conservation for homology-based gene prediction. Nucleic Acids Research, 44, e89.
Kim, D., Landmead, B., & Salzberg, S. L. (2015). hisat: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357-360.
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 27, 722-736.
Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5.
Kraus, R. H. S., Kerstens, H. H. D., Van Hooft, P., Crooijmans, R. P. M. A., Van Der Poel, J. J., Elmberg, J., Vignal, A., Huang, Y., Li, N., Prins, H. H. T., & Groenen, M. A. M. (2011). Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genomics, 12(1), 150-160. https://doi.org/10.1186/1471-2164-12-150.
Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). circos: An information aesthetic for comparative genomics. Genome Research, 19, 1639-1645.
Kumar, S., Stecher, G., Suleski, M., & Hedges, S. B. (2017). TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34, 1812-1819.
Lapègue, S., Harrang, E., Heurtebise, S., Flahauw, E., Donnadieu, C., Gayral, P., Ballenghien, M., Genestout, L., Barbotte, L., Mahla, R., Haffray, P., & Klopp, C. (2014). Development of SNP-genotyping arrays in two shellfish species. Molecular Ecology Resources, 14, 820-830.
Li, C. Y., Wang, J. P., Song, K., Meng, J., Xu, F., Li, L., & Zhang, G. F. (2018). Construction of a high-density genetic map and fine QTL mapping for growth and nutritional traits of Crassostrea gigas. BMC Genomics, 19(1), 626-640. https://doi.org/10.1186/s12864-018-4996-z.
Li, H. (2018). minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics, 34, 3094-3100.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754-1760.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and samtools. Bioinformatics, 25, 2078-2079.
Li, L. I., Li, A. O., Song, K., Meng, J., Guo, X., Li, S., Li, C., De Wit, P., Que, H., Wu, F., Wang, W., Qi, H., Xu, F., Cong, R., Huang, B., Li, Y., Wang, T., Tang, X., Liu, S., … Zhang, G. (2018). Divergence and plasticity shape adaptive potential of the Pacific oyster. Nature Ecology and Evolution, 2, 1751-1760.
Liu, G. E., Ventura, M., Cellamare, A., Chen, L., Cheng, Z. E., Zhu, B., Li, C., Song, J., & Eichler, E. E. (2009). Analysis of recent segmental duplications in the bovine genome. BMC Genomics, 10, 571. https://doi.org/10.1186/1471-2164-10-571.
Majoros, W. H., Pertea, M., & Salzberg, S. L. (2004). tigrscan and glimmerhmm: Two open source ab initio eukaryotic gene-finders. Bioinformatics, 20, 2878-2879.
McDonald, M. J., Wang, W. C., Huang, H. D., & Leu, J. Y. (2011). Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences. PLOS Biology, 9, e1000622.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297-1303.
Mehan, M. R., Freimer, N. B., & Ophoff, R. A. (2004). A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture. Human Genomics, 1, 335-344.
Mitchell-Olds, T., & Schmitt, J. (2006). Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature, 441, 947-952.
Pightling, A. W., Petronella, N., & Pagotto, F. (2014). Choice of reference sequence and assembler for alignment of Listeria monocytogenes short-read sequence data greatly influences rates of rrror in SNP analyses. PLoS One, 9.
Pryszcz, L. P., & Gabaldon, T. (2016). redundans: An assembly pipeline for highly heterozygous genomes. Nucleic Acids Research, 44, e113.
Pryszcz, L. P., Nemeth, T., Gacser, A., & Gabaldon, T. (2014). Genome comparison of Candida orthopsilosis clinical strains reveals the existence of hybrids between two distinct subspecies. Genome Biology and Evolution, 6, 1069-1078.
Qi, H. G., Song, K., Li, C. Y., Wang, W., Li, B. S., Li, L., & Zhang, G. F. (2017). Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas). PLoS One, 12, e0174007.
Ren, J. F., Liu, X. A., Jiang, F., Guo, X. M., & Liu, B. (2010). Unusual conservation of mitochondrial gene order in Crassostrea oysters: Evidence for recent speciation in Asia. BMC Evolutionary Biology, 10, 394. https://doi.org/10.1186/1471-2148-10-394.
Salzberg, S. L.(2019). Next-generation genome annotation: we still struggle to get it right. Genome Biology, 20(1), 92-94. https://doi.org/10.1186/s13059-019-1715-2.
Sauvage, C., Bierne, N., Lapegue, S., & Boudry, P. (2007). Single Nucleotide polymorphisms and their relationship to codon usage bias in the Pacific oyster Crassostrea gigas. Gene, 406, 13-22.
Scalzitti, N., Jeannin-Girardon, A., Collet, P., Poch, O., & Thompson, J. D. (2020). A benchmark study of ab initio gene prediction methods in diverse eukaryotic organisms. BMC Genomics, 21, 293-312.
Schmidt, A., Wehrmann, A., & Dittmann, S. (2008). Population dynamics of the invasive Pacific oyster Crassostrea gigas during the early stages of an outbreak in the Wadden Sea (Germany). Helgoland Marine Research, 62, 367-376.
She, Z. C., Li, L., Qi, H. G., Song, K., Que, H. Y., & Zhang, G. F. (2015). Candidate gene polymorphisms and their association with glycogen content in the Pacific oyster Crassostrea gigas. PLoS One, 10, e0124401.
Shi, R. H., Li, C. Y., Qi, H. G., Liu, S., Wang, W., Li, L., & Zhang, G. F. (2020). Construction of a high-resolution genetic map of Crassostrea gigas: QTL mapping and GWAS applications revealed candidate genes controlling nutritional traits. Aquaculture, 527, 735427.
Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). busco: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31, 3210-3212.
Small, K. S., Brudno, M., Hill, M. M., & Sidow, A. (2007). A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biology, 8.
Smitz, N., Van Hooft, P., Heller, R., Cornélis, D., Chardonnet, P., Kraus, R., Greyling, B., Crooijmans, R., Groenen, M., & Michaux, J. (2016). Genome-wide single nucleotide polymorphism (SNP) identification and characterization in a non-model organism, the African buffalo (Syncerus caffer), using next generation sequencing. Mammalian Biology, 81, 595-603.
Staglicic, N., Segvic-Bubic, T., Ezgeta-Balic, D., Varezic, D. B., Grubisic, L., Zuvic, L., & Briski, E. (2020). Distribution patterns of two co-existing oyster species in the northern Adriatic Sea: The native European flat oyster Ostrea edulis and the non-native Pacific oyster Magallana gigas. Ecological Indicators, 113.
Stanke, M., & Waack, S. (2003). Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics, 19, Ii215.
Takeuchi, T. (2017). Molluscan genomics: Implications for biology and aquaculture. Current Molecular Biology Reports, 3(4), 297-305. https://doi.org/10.1007/s40610-017-0077-3.
Takeuchi, T., Kawashima, T., Koyanagi, R., Gyoja, F., Tanaka, M., Ikuta, T., Shoguchi, E., Fujiwara, M., Shinzato, C., Hisata, K., Fujie, M., Usami, T., Nagai, K., Maeyama, K., Okamoto, K., Aoki, H., Ishikawa, T., Masaoka, T., Fujiwara, A., … Satoh, N. (2012). Draft genome of the Pearl oyster Pinctada fucata: A platform for understanding bivalve biology. DNA Research, 19, 117-130.
Tang, H., Zhang, X., Miao, C., Zhang, J., Ming, R., Schnable, J. C., Schnable, P. S., Lyons, E., & Lu, J. (2015). allmaps: Robust scaffold ordering based on multiple maps. Genome Biology, 16, 3-17. https://doi.org/10.1186/s13059-014-0573-1.
Tang, S. Y. Y., Lomsadze, A., & Borodovsky, M. (2015). Identification of protein coding regions in RNA transcripts. Nucleic Acids Research, 43, e78.
Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 25(1), 4.10.11-14.10.14. https://doi.org/10.1002/0471250953.bi0410s25.
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511-U174.
Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9, e112963.
Wang, H. Y., Qian, L. M., Liu, X. A., Zhang, G. F., & Guo, X. M. (2010). Classification of a common cupped oyster from southern China. Journal of Shellfish Research, 29, 857-866.
Wang, J. P., Li, L., & Zhang, G. F. (2016). A high-density SNP genetic linkage map and QTL analysis of growth-related traits in a hybrid family of oysters (Crassostrea gigas x Crassostrea angulata) using genotyping-by-sequencing. G3-Genes Genomes Genetics, 6, 1417-1426.
Wang, J. F., Qi, H. G., Li, L., Que, H. Y., Wang, D., & Zhang, G. F. (2015). Discovery and validation of genic single nucleotide polymorphisms in the Pacific oyster Crassostrea gigas. Molecular Ecology Resources, 15, 123-135.
Wang, X., Xu, W., Wei, L., Zhu, C., He, C., Song, H., Cai, Z., Yu, W., Jiang, Q., Li, L., Wang, K., & Feng, C. (2019). Nanopore sequencing and de novo assembly of a black-shelled Pacific oyster (Crassostrea gigas) genome. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.01211.
Wang, X. H., Zheng, Z. Q., Cai, Y. D., Chen, T., Li, C., Fu, W. W., & Jiang, Y. (2017). cnvcaller: Highly efficient and widely applicable software for detecting copy number variations in large populations. Gigascience, 6, 1-12. https://doi.org/10.1093/gigascience/gix115.
Wang, Y., Tang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., Lee, T.-H., Jin, H., Marler, B., Guo, H., Kissinger, J. C., & Paterson, A. H. (2012). mcscanx: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49.
Wrange, A.-L., Valero, J., Harkestad, L. S., Strand, Ø., Lindegarth, S., Christensen, H. T., Dolmer, P., Kristensen, P. S., & Mortensen, S. (2010). Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia. Biological Invasions, 12, 1145-1152.
Xiong, W. W., He, L. M., Lai, J. S., Dooner, H. K., & Du, C. G. (2014). HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proceedings of the National Academy of Sciences of the United States of America, 111, 10263-10268.
Yang, Z. H. (2007). paml 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586-1591.
Yin, X., Arias-Perez, A., Kitapci, T. H., & Hedgecock, D. (2020). High-density linkage maps based on genotyping-by-sequencing (GBS) confirm a chromosome-level genome assembly and reveal variation in recombination rate for the Pacific oyster Crassostrea gigas. G3-Genes Genomes Genetics, 10, 4691-4705.
Zarrei, M., MacDonald, J. R., Merico, D., & Scherer, S. W. (2015). A copy number variation map of the human genome. Nature Reviews Genetics, 16, 172-183.
Zhang, G., Fang, X., Guo, X., Li, L. I., Luo, R., Xu, F., Yang, P., Zhang, L., Wang, X., Qi, H., Xiong, Z., Que, H., Xie, Y., Holland, P. W. H., Paps, J., Zhu, Y., Wu, F., Chen, Y., Wang, J., … Wang, J. (2012). The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490, 49-54.
Zhang, X. T., Zhang, S. C., Zhao, Q., Ming, R., & Tang, H. B. (2019). Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nature Plants, 5, 833-845.
Zhu, L. C., Zhang, Y., Zhang, W., Yang, S. H., Chen, J. Q., & Tian, D. C. (2009). Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics, 10, 47.
Zmienko, A., Marszalek-Zenczak, M., Wojciechowski, P., Samelak-Czajka, A., Luczak, M., Kozlowski, P., Karlowski, W. M., & Figlerowicz, M. (2020). AthCNV: A map of DNA copy number variations in the Arabidopsis genome. The Plant Cell, 32, 1797-1819.
Grant Information:
41876169 National Natural Science Foundation of China; 2019JZZY010813 Major scientific and technological innovation projects in Shandong Province; COMS2019Q06 Key Deployment Project of Centre for Ocean Mega-Research of Science, Chinese academy of science; CARS-49 The Earmarked Fund for China Agriculture Research System
Contributed Indexing:
Keywords: Crassostrea gigas; Pacific oyster; genome; resequencing; variation
Entry Date(s):
Date Created: 20210303 Date Completed: 20210818 Latest Revision: 20210818
Update Code:
20240105
DOI:
10.1111/1755-0998.13368
PMID:
33655634
Czasopismo naukowe
The Pacific oyster (Crassostrea gigas) is a widely distributed marine bivalve of great ecological and economic importance. In this study, we provide a high-quality chromosome-level genome assembled using Pacific Bioscience long reads and Hi-C-based and linkage-map-based scaffolding technologies and a high-resolution variation map constructed using large-scale resequencing analysis. The 586.8 Mb genome consists of 10 pseudochromosome sequences ranging from 38.6 to 78.9 Mb, containing 301 contigs with an N50 size of 3.1 Mb. A total of 30,078 protein-coding genes were predicted, of which 22,757 (75.7%) were high-reliability annotations supported by a homologous match to a curated protein in the SWISS-PROT database or transcript expression. Although a medium level of repeat components (57.2%) was detected, the genomic content of the segmental duplications reached 26.2%, which is the highest among the reported genomes. By whole genome resequencing analysis of 495 Pacific oysters, a comprehensive variation map was built, comprised of 4.78 million single nucleotide polymorphisms, 0.60 million short insertions and deletions, and 49,333 copy number variation regions. The structural variations can lead to an average interindividual genomic divergence of 0.21, indicating their crucial role in shaping the Pacific oyster genome diversity. The large amount of mosaic distributed repeat elements, small variations, and copy number variations indicate that the Pacific oyster is a diploid organism with an extremely high genomic complexity at the intra- and interindividual level. The genome and variation maps can improve our understanding of oyster genome diversity and enrich the resources for oyster molecular evolution, comparative genomics, and genetic research.
(© 2021 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies