Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

shrub is required for spermatogenesis of Drosophila melanogaster.

Tytuł :
shrub is required for spermatogenesis of Drosophila melanogaster.
Autorzy :
Chen MY; Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China.
Tayyeb A; Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China.
Wang YF; Hubei Key Laboratory of Genetic Regulation and Integrative Biology Sciences, School of Life, Central China Normal University, Wuhan, China.; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
Pokaż więcej
Źródło :
Archives of insect biochemistry and physiology [Arch Insect Biochem Physiol] 2021 Apr; Vol. 106 (4), pp. e21779. Date of Electronic Publication: 2021 Mar 03.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Publication: New York, NY : Wiley
Original Publication: New York : Alan R. Liss, c1983-
MeSH Terms :
Drosophila melanogaster*/metabolism
Drosophila melanogaster*/physiology
Drosophila Proteins/*metabolism
Nerve Tissue Proteins/*metabolism
Spermatogenesis/*physiology
Animals ; Female ; Male ; Ovary/metabolism ; Testis/metabolism
References :
Ali, M. Y., Lu, H., Bookwalter, C. S., Warshaw, D. M., & Trybus, K. M. (2008). Myosin V and Kinesin act as tethers to enhance each others' processivity. Proceedings of the National Academy of Sciences, USA, 105(12), 4691-4696.
Carlton, J. G., Caballe, A., Agromayor, M., Kloc, M., & Martin-Serrano, J. (2012). ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science, 336(6078), 220-225.
Chen, Y. N., Wu, C. H., Zheng, Y., Li, J. J., Wang, J. L., & Wang, Y. F. (2015). Knockdown of ATPsyn-b caused larval growth defect and male infertility in Drosophila. Archives of Insect Biochemistry and Physiology, 88(2), 144-154.
Eikenes, Å. H., Malerød, L., Christensen, A. L., Steen, C. B., Mathieu, J., Nezis, I. P., Liestøl, K., Huynh, J. R., Stenmark, H., & Haglund, K. (2015). ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo. PLOS Genetics, 11(1), e1004904.
Fabian, L., & Brill, J. A. (2012). Drosophila spermiogenesis: Big things come from little packages. Spermatogenesis, 2(3), 197-212.
Fabrizio, J. J., Hime, G., Lemmon, S. K., & Bazinet, C. (1998). Genetic dissection of sperm individualization in Drosophila melanogaster. Development, 125(10), 1833-1843.
Fairchild, M. J., Islam, F., & Tanentzapf, G. (2017). Identification of genetic networks that act in the somatic cells of the testis to mediate the developmental program of spermatogenesis. PLOS Genetics, 13(9), e1007026.
Fuller, M. (1993). Spermatogenesis. The Development of Drosophila. In M. Martinez-Arias, & M. Bate (Eds.), Cold Spring Harbor. Cold Spring Harbor Press.
Fyrberg, C., Ryan, L., Kenton, M., & Fyrberg, E. (1994). Genes encoding actin-related proteins of Drosophila melanogaster. Journal of Molecular Biology, 241(3), 498-503.
Gaudet, P., Livstone, M., Lewis, S. E., & Thomas, P. (2011). Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Briefings in Bioinformatics, 12(5), 449-462.
Ghosh-Roy, A., Desai, B. S., & Ray, K. (2005). Dynein light chain 1 regulates dynamin-mediated F-actin assembly during sperm individualization in Drosophila. Molecular Biology of the Cell, 16(7), 3107-3116.
Ghosh-Roy, A., Kulkarni, M., Kumar, V., Shirolikar, S., & Ray, K. (2004). Cytoplasmic dynein-dynactin complex is required for spermatid growth but not axoneme assembly in Drosophila. Molecular Biology of the Cell, 15, 2470-2483.
Goldstein, L. S., & Gunawardena, S. (2000). Flying through the drosophila cytoskeletal genome. Journal of Cell Biology, 150(2), 63-68.
Hanson, P. I., Roth, R., Lin, Y., & Heuser, J. E. (2008). Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. The Journal of Cell Biology, 180(2), 389-402.
Issman-Zecharya, N., & Schuldiner, O. (2014). The PI3K class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation. Developmental Cell, 31(4), 461-473.
Ji, S., Li, C., Hu, L., Liu, K., Mei, J., Luo, Y., Tao, Y., Xia, Z., Sun, Q., & Chen, D. (2017). Bam-dependent deubiquitinase complex can disrupt germ-line stem cell maintenance by targeting cyclin A. Proceedings of the National Academy of Sciences of the United States of America, 114(24), 6316-6321.
Kemphues, K. J., Kaufman, T. C., Raff, R. A., & Raff, E. C. (1982). The testis-specific β-tubulin subunit in Drosophila melanogaster has multiple functions in spermatogenesis. Cell, 31(3), 655-670.
Kimura, S. (2013). The Nap family proteins, CG5017/Hanabi and Nap1, are essential for Drosophila spermiogenesis. FEBS Letters, 587(7), 922-929.
Kracklauer, M. P., Wiora, H. M., Deery, W. J., Chen, X., Bolival, B., Jr., Romanowicz, D., Simonette, R. A., Fuller, M. T., Fischer, J. A., & Beckingham, K. M. (2010). The Drosophila SUN protein Spag4 cooperates with the coiled-coil protein Yuri Gagarin to maintain association of the basal body and spermatid nucleus. Journal of Cell Science, 123(16), 2763-2772. https://doi.org/10.1242/jcs.066589.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408.
Loncle, N., Agromayor, M., Martin-Serrano, J., & Williams, D. W. (2015). An ESCRT module is required for neuron pruning. Scientific Reports, 5, 8461.
Matias, N. R., Mathieu, J., & Huynh, J.-R. (2015). Abscission is regulated by the ESCRT-III protein shrub in Drosophila germline stem cells. PLOS Genetics, 11(2), e1004653.
Raiborg, C., & Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature, 458(7237), 445-452.
Sears, J. C., & Broadie, K. (2018). Fragile X mental retardation protein regulates activity-dependent membrane trafficking and trans-synaptic signaling mediating synaptic remodeling. Frontiers in Molecular Neuroscience, 10, 440. https://doi.org/10.3389/fnmol.2017.00440.
Steinhauer, J., Statman, B., Fagan, J. K., Borck, J., Surabhi, S., Yarikipati, P., Edelman, D., & Jenny, A. (2019). Combover interacts with the axonemal component Rsp3 and is required for Drosophila sperm individualization. Development, 146(17), dev179275. https://doi.org/10.1242/dev.179275.
Sweeney, N. T., Brenman, J. E., Jan, Y. N., & Gao, F. B. (2006). The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Current Biology, 16(10), 1006-1011.
Teis, D., Saksena, S., & Emr, S. D. (2008). Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Developmental Cell, 15(4), 578-589.
Tokuyasu, K. (1974). Dynamics of spermiogenesis in Drosophila melanogaster: IV. Nuclear transformation. Journal of Ultrastructure Research, 48(2), 284-303.
Vedelek, V., Bodai, L., Grézal, G., Kovács, B., Boros, I. M., Laurinyecz, B., & Sinka, R. (2018). Analysis of Drosophila melanogaster testis transcriptome. BMC Genomics, 19(1), 697.
Vibranovski, M. D., Chalopin, D. S., Lopes, H. F., Long, M., & Karr, T. L. (2010). Direct evidence for postmeiotic transcription during Drosophila melanogaster spermatogenesis. Genetics, 186(1), 431-433.
Vita, D. J., & Broadie, K. (2017). ESCRT-III membrane trafficking misregulation contributes to fragile X syndrome synaptic defects. Scientific Reports, 7(1), 8683.
Wang, Y., Xu, R., Cheng, Y., Cao, H., Wang, Z., Zhu, T., Jiang, J., Zhang, H., Wang, C., Qi, L., Liu, M., Guo, X., Huang, J., & Sha, J. (2019). RSBP15 interacts with and stabilizes dRSPH3 during sperm axoneme assembly in Drosophila. Journal of Genetics and Genomics, 46(6), 281-290.
Wasbrough, E. R., Dorus, S., Hester, S., Howard-Murkin, J., Lilley, K., Wilkin, E., Polpitiya, A., Petritis, K., & Karr, T. L. (2010). The Drosophila melanogaster sperm proteome-II (DmSP-II). Journal of Proteomics, 73(11), 2171-2185.
Wei, Y. L., Yang, T., Kovacs, T., & Yang, W. X. (2019). C-terminal kinesin motor es-KIFC1 regulates nuclear formation during spermiogenesis in Chinese mitten crab Eriocheir sinensis. Gene, 719. https://doi.org/10.1016/j.gene.2019.144074.
Witt, E., Benjamin, S., Svetec, N., & Zhao, L. (2019). Testis single-cell RNA-seq reveals the dynamics of de novo gene transcription and germline mutational bias in Drosophila. eLife, 8. https://doi.org/10.7554/eLife.47138.
Wu, C. H., Zong, Q., Du, A. L., Zhang, W., Yao, H.-C., Yu, X. Q., & Wang, Y. F. (2016). Knockdown of Dynamitin in testes significantly decreased male fertility in Drosophila melanogaster. Developmental Biology, 420(1), 79-89.
Yu, J., Chen, B., Zheng, B., Qiao, C., Chen, X., Yan, Y., Luan, X., Xie, B., Liu, J., Shen, C., He, Z., Hu, X., Liu, M., Li, H., Shao, Q., & Fang, J. (2019). ATP synthase is required for male fertility and germ cell maturation in Drosophila testes. Molecular Medicine Reports, 19(3), 1561-1570.
Yu, J., Lan, X., Chen, X., Yu, C., Xu, Y., Liu, Y., Xu, L., Fan, H. Y., & Tong, C. (2016). Protein synthesis and degradation are essential to regulate germline stem cell homeostasis in Drosophila testes. Development, 143(16), 2930-2945.
Yuan, L. L., Chen, X., Zong, Q., Zhao, T., Wang, J. L., Zheng, Y., Zhang, M., Wang, Z., Brownlie, J. C., Yang, F., & Wang, Y. F. (2015). Quantitative proteomic analyses of molecular mechanisms associated with cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia. Journal of Proteome Research, 14(9), 3835-3847.
Zhang, H., Wang, Y., Wong, J. J. L., Lim, K.-L., Liou, Y.-C., Wang, H., & Yu, F. (2014). Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila. Developmental Cell, 30(4), 463-478.
Grant Information :
31672352 National Natural Science Foundation of China; CCNU18ZDPY03 Fundamental Research Funds for the Central Universities; SKLBEE2019014 Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering
Contributed Indexing :
Keywords: Drosophila melanogaster; individualization complex; shrub; spermatogenesis; ubiquitylated protein
Substance Nomenclature :
0 (Drosophila Proteins)
0 (Nerve Tissue Proteins)
0 (Shrb protein, Drosophila)
Entry Date(s) :
Date Created: 20210304 Date Completed: 20210409 Latest Revision: 20210409
Update Code :
20210410
DOI :
10.1002/arch.21779
PMID :
33660341
Czasopismo naukowe
Shrub (CG8055) encodes the vps32/snf7 protein, a filament-forming subunit of the ESCRT (endosomal sorting complexes required for transport)-III complex involved in inward membrane budding. It was reported that shrub was required for abscission in female germline stem cells. In this study, we showed that the expression level of shrub in the testis was significantly higher than that in the ovary of 1-day-old Drosophila melanogaster, suggesting a role in male reproduction. Then we used nosGal4 driver to knockdown shrub specifically in the fly testis and found that this resulted in a significantly lower paternal effect egg hatch rate relative to the control group. Immunofluorescence staining showed that shrub knockdown in fly testes caused an accumulation of early-stage germ cells and lack of spectrin caps. In the late stages (spermiogenesis), the control testis contained multiple compacted spermatid bundles and individualization complexes (ICs) consisting of actin cones, whereas there were scattered spermatid nuclei and only a few ICs with disorganized actin cones in the shrub knockdown testis. Finally, the control seminal vesicle was full of mature sperms with needle-like heads, but in shrub knockdown testis 75% of seminal vesicles had no mature sperms. We also found that knockdown of shrub in fly testes led to upregulated expression of several cytoskeleton-associated genes, and an accumulation of ubiquitylated proteins. These results suggest that knockdown of shrub in fly testes might damage spermatogenesis by affecting transportability.
(© 2021 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies