Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Genetic control of root plasticity in response to salt stress in maize.

Tytuł :
Genetic control of root plasticity in response to salt stress in maize.
Autorzy :
Li P; Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
Yang X; Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
Wang H; Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
Pan T; Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
Wang Y; Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
Xu Y; Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
Xu C; Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China. .; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China. .; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China. .
Yang Z; Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China. .; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China. .; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China. .
Pokaż więcej
Źródło :
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2021 May; Vol. 134 (5), pp. 1475-1492. Date of Electronic Publication: 2021 Mar 04.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Berlin, New York, Springer
References :
Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18.
AlvarezBuylla ER, GarcíaPonce B, MdlP S, EspinosaSoto C, GarcíaGómez ML, PiñeyroNelson A, GarayArroyo A (2019) MADS-box genes underground becoming mainstream: plant root developmental mechanisms. New Phytol 223:1143–1158.
Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666. (PMID: 24555710)
Choi M, Scholl UI, Ji WZ, Liu TW, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu A, Ozen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci 106:19096–19101. (PMID: 19861545)
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang XG, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. (PMID: 268134014728800)
Deolu-Ajayi AO, Meyer AJ, Haring MA, Julkowska MM, Testerink C (2019) Genetic loci associated with early root responses to salt stress. iScience 21:458–473. (PMID: 317072596849332)
Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341. (PMID: 233413373584545)
Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302. (PMID: 21511515)
Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Ca T (2013) Halotropism is a response of plant roots to avoid a saline environment. Curr Biol 23:2044–2050. (PMID: 24094855)
Gibson SW, Todd CD (2015) Arabidopsis AIR12 influences root development. Physiology and Molecular Biology of Plants 21:479–489. (PMID: 266006754646869)
Giehl RF, Gruber BD, von Wirén N (2014) It’s time to make changes: modulation of root system architecture by nutrient signals. J Exp Bot 65:769–778. (PMID: 24353245)
Giovannetti M, Goeschl C, Dietzen C, Andersen SU, Kopriva S, Busch W (2019) Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content. PLoS Genet 15:e1008126. (PMID: 318561956941899)
Guo YY, Wu HY, Li X, Li Q, Zhao XY, Duan XQ, An YR, Lv W, An HL (2017) Identification and expression of GRAS family genes in maize (Zea mays L.). PLoS ONE 12:e0185418. (PMID: 289574405619761)
Hochholdinger F, Yu P, Marcon C (2018) Genetic control of root system development in maize. Trends Plant Sci 23:79–88. (PMID: 29170008)
Huang GT, Ma LS, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987. (PMID: 21573796)
Jia ZT, Giehl RF, Meyer RC, Altmann T, von Wirén N (2019) Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nature Communications 10:1–13.
Juenger TE (2013) Natural variation and genetic constraints on drought tolerance. Curr Opin Plant Biol 16:274–281. (PMID: 23462639)
Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends Plant Sci 20:586–594. (PMID: 26205171)
Julkowska MM, Hoefsloot HC, Mol S, Feron R, de Boer G-J, Haring MA, Testerink C (2014) Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiol 166:1387–1402. (PMID: 252712664226346)
Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester MA, Keurentjes B, JJ, Korte A, Haring MA, n de Boer GJ, Testerink C, (2017) Genetic components of root architecture remodeling in response to salt stress. Plant Cell 29:3198–3213. (PMID: 291140155757256)
Kadam NN, Tamilselvan A, Lawas LMF, Quinones C, Bahuguna RN, Thomson MJ, Dingkuhn M, Muthurajan R, Struik PC, Yin XY, Jagadish SVK (2017) Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit. Plant Physiol 174:2302–2315. (PMID: 286003465543957)
Korver RA, Koevoets IT, Testerink C (2018) Out of shape during stress: a key role for auxin. Trends Plant Sci 23:783–793. (PMID: 299147226121082)
Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler-Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L (2019) Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environ 43(2):344–357. (PMID: 31762057)
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9:559.
Li BH, Sun L, Huang JY, Göschl C, Shi WM, Chory J, Busch W (2019) GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity. Nat Commun 10:1–13.
Liu C, Chen K, Zhao X, Wang XQ, Shen CC, Zhu YJ, Dai ML, Qiu XJ, Yang RW, Xing DY, Pang YL, Xu JL (2019) Identification of genes for salt tolerance and yield-related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. Rice 12:88. (PMID: 317926436889114)
Ma NL, Che Lah WA, Abd. Kadir N, Mustaqim M, Rahmat Z, Ahmad A, Lam SD, Ismail MR, (2018) Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PLoS ONE 13:e0192732. (PMID: 294898385831039)
Osthoff A, dalle Rose PD, Baldauf JA, Piepho H-P, Hochholdinger F, (2019) Transcriptomic reprogramming of barley seminal roots by combined water deficit and salt stress. BMC Genomics 20:325. (PMID: 310359226489292)
Oyiga BC, Palczak J, Wojciechowski T, Lynch JP, Naz AA, Léon J, Ballvora A (2020) Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. Plant Cell Environ 43:692–711. (PMID: 31734943)
Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L). BMC Genom 16:47.
Pierik R, Testerink C (2014) The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol 166:5–22. (PMID: 249727134149730)
Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98. (PMID: 25448235)
Sekhon RS, Saski C, Kumar R, Flinn BS, Luo F, Beissinger TM, Ackerman AJ, Breitzman MW, Bridges WC, de Leon N, Kaeppler SM (2019) Integrated genome-scale analysis identifies novel genes and networks underlying senescence in maize. Plant Cell 31:1968–1989. (PMID: 338312006751112)
Wang YJ, Deng DX, Bian YL, Lv YP, Xie Q (2010) Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.). Mol Biol Rep 37:3991–4001. (PMID: 20232157)
Wang H, Zhang MS, Guo R, Shi DC, Liu B, Lin XY, Yang CW (2012) Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L). BMC Plant Biol 12:194. (PMID: 230828243496643)
Wang HM, Wei J, Li PC, Wang YY, Ge ZZ, Qian JY, Fan YY, Ni JR, Xu Y, Yang ZF, Xu CW (2019) Integrating GWAS and gene expression analysis identifies candidate genes for root morphology traits in maize at the seedling stage. Genes 10:773. (PMID: 6826382)
Xu N, Chu YL, Chen HL, Li XX, Wu Q, Jin L, Wang GX, Huang JL (2018) Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA–mediated regulatory pathway and ROS scavenging. PLoS Genet 14:e1007662. (PMID: 303039536197697)
Yang YQ, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr Plant Biol 60:796–804. (PMID: 29905393)
Yang JT, Schneider HM, Brown KM, Lynch JP (2019) Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific. J Exp Bot 70:5311–5325. (PMID: 312317686793441)
Yu LH, Miao ZQ, Qi GF, Wu J, Cai XT, Mao JL, Xiang CB (2014) MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Molecular Plant 7:1653–1669. (PMID: 251226974228986)
Yu P, Hochholdinger F, Li CJ (2019) Plasticity of lateral root branching in maize. Front Plant Sci 10:363. (PMID: 309842216449698)
Yue JY, Wang LH, Dou XT, Wang YJ, Wang HZ (2020) Comparative metabolomic profiling in the roots of salt-tolerant and salt-intolerant maize cultivars treated with NaCl stress. Biol Plant 64:569–577.
Zhang YX, Paschold A, Marcon C, Liu S, Tai H, Nestler J, Yeh CT, Opitz N, Lanz C, Schnable PS, Hochholdinger F (2014) The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. J Exp Bot 65:4919–4930. (PMID: 249289844144770)
Zhang ML, Kong XP, Xu XB, Li CL, Tian HY, Ding ZJ (2015) Comparative transcriptome profiling of the maize primary, crown and seminal root in response to salinity stress. PLoS ONE 10:e0121222. (PMID: 258030264372355)
Zhang M, Cao YB, Wang ZP, Wang ZQ, Shi JP, Liang XY, Song WB, Chen QJ, Lai JS, Jiang CF (2018) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 217:1161–1176. (PMID: 29139111)
Zhang M, Liang XY, Wang LM, Cao YB, Song WB, Shi JP, Lai JS, Jiang CF (2019) A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat plants 5:1297–1308. (PMID: 31819228)
Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324. (PMID: 277165055104190)
Grant Information :
31972487 National Natural Science Foundation of China; 32061143030 National Natural Science Foundation of China; 31902101 National Natural Science Foundation of China; 2016YFD0100303 Key Technology Research and Development Program of Shandong; BK20180920 Natural Science Foundation of Jiangsu Province; BE2018325 Jiangsu Provincial Key Research and Development Program
Entry Date(s) :
Date Created: 20210304 Latest Revision: 20210429
Update Code :
20210506
DOI :
10.1007/s00122-021-03784-4
PMID :
33661350
Czasopismo naukowe
Key Message: GWAS identified 559 significant SNPs associated with the remodelling of the root architecture in response to salt, and 168 candidate genes were prioritized by integrating RNA-seq, DEG and WGCNA data. Salinity is a major environmental factor limiting crop growth and productivity. The root is the first plant organ to encounter salt stress, yet the effects of salinity on maize root development remain unclear. In this study, the natural variations in 14 root and 4 shoot traits were evaluated in 319 maize inbred lines under control and saline conditions. Considerable phenotypic variations were observed for all traits, with high salt concentrations decreasing the root length, but increasing the root diameter. A genome-wide association study was conducted to analyse these traits and their plasticity (relative variation). We detected 559 significant single nucleotide polymorphisms, of which 125, 181 and 253 were associated with the control condition, stress condition and trait plasticity, respectively. A total of 168 of 587 candidate genes identified by genome-wide association study were supported by the differentially expressed genes or co-expression networks. Two candidate genes ZmIAA1 and ZmGRAS43 were validated by resequencing. Among these genes, 130 were detected under stress condition or trait plasticity that involved in diverse biological processes including plant hormone signal transduction, phenylpropanoid biosynthesis and fatty acid biosynthesis. Our findings clarify the root remodelling to salinity, and the identified loci and candidate genes may be important for the genetic improvement of root traits and salt tolerance in maize.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies