Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Reinvestigation of THOUSAND-GRAIN WEIGHT 6 grain weight genes in wheat and rice indicates a role in pollen development rather than regulation of auxin content in grains.

Tytuł :
Reinvestigation of THOUSAND-GRAIN WEIGHT 6 grain weight genes in wheat and rice indicates a role in pollen development rather than regulation of auxin content in grains.
Autorzy :
Kabir MR; School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia.
Nonhebel HM; School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia. .
Pokaż więcej
Źródło :
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2021 Mar 09. Date of Electronic Publication: 2021 Mar 09.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
Imprint Name(s) :
Original Publication: Berlin, New York, Springer
References :
Abu-Zaitoon YM, Bennett K, Normanly J, Nonhebel HM (2012) A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiologia Plant 146:487–499. (PMID: 10.1111/j.1399-3054.2012.01649.x)
Appels R et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:6403.
Bandurski RS, Schulze A (1977) Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol 60:211–213. (PMID: 10.1104/pp.60.2.211)
Basunia MA, Nonhebel HM (2019) Hormonal regulation of cereal endosperm development with a focus on rice (Oryza sativa). Funct Plant Biol 46:493–506. (PMID: 10.1071/FP18323)
Beral A, Rincent R, Le Gouis J, Girousse C, Allard V (2020) Wheat individual grain-size variance originates from crop development and from specific genetic determinism. PLoS ONE 15:e0230689. (PMID: 10.1371/journal.pone.0230689)
Bernardi J, Lanubile A, Li QB, Kumar D, Kladnik A, Cook SD, Ross JJ, Marocco A, Chourey PS (2012) Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol 160:1318–1328. (PMID: 10.1104/pp.112.204743)
Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170:2172–2186. (PMID: 10.1104/pp.15.01667)
Brinton J, Uauy C (2019) A reductionist approach to dissecting grain weight and yield in wheat. J Intgr Plant Biol 61:337–358. (PMID: 10.1111/jipb.12741)
Cao J, Li G, Qu D, Li X, Wang Y (2020) Into the seed: auxin controls seed development and grain yield. Int J Mol Sci 21:1662. (PMID: 10.3390/ijms21051662)
Chen KH, Miller AN, Patterson GW, Cohen JD (1988) A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol 86:822–825. (PMID: 10.1104/pp.86.3.822)
Choi MS, Koh EB, Woo MO, Piao R, Oh CS, Koh HJ (2012) Tiller formation in rice is altered by overexpression of OsIAGLU gene encoding an IAA-conjugating enzyme or exogenous treatment of free IAA. J Plant Biol 55:429–435. (PMID: 10.1007/s12374-012-0238-0)
Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Gouis JL, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury J-M, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721. (PMID: 10.1126/science.1249721)
Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Ann Rev Plant Physiol 33:403–430. (PMID: 10.1146/annurev.pp.33.060182.002155)
Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2011) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40:D1194–D1201. (PMID: 10.1093/nar/gkr938)
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. (PMID: 10.1093/nar/gkh340)
Emery LR, Morgan SL (2017) The application of project-based learning in bioinformatics training. PLoS Comput Biol 13:e1005620. (PMID: 10.1371/journal.pcbi.1005620)
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. (PMID: 10.1111/j.1558-5646.1985.tb00420.x)
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. (PMID: 10.1093/nar/gkr944)
Guo T, Chen K, Dong NQ, Ye WW, Shan JX, Lin HX (2019) Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. J Integr Plant Biol 62:581–600. (PMID: 10.1111/jipb.12820)
Gupta PK, Balyan HS, Sharma S, Kumar R (2020) Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor Appl Genet 133:1569–1602. (PMID: 10.1007/s00122-020-03583-3)
He Y, Zhao J, Yang B, Sun S, Peng L, Wang Z (2020) Indole-3-acetate beta-glucosyltransferase OsIAGLU regulates seed vigour through mediating crosstalk between auxin and abscisic acid in rice. Plant Biotech J 18:1933–1945. (PMID: 10.1111/pbi.13353)
Hu MJ, Zhang HP, Cao JJ, Zhu XF, Wang SX, Jiang H, Wu ZY, Lu J, Cheng C, Sun GL, Ma CX (2016a) Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed 36:1–11. (PMID: 10.1007/s11032-015-0425-z)
Hu MJ, Zhang HP, Liu K, Cao JJ, Wang SX, Jiang H, Wu ZY, Lu J, Zhu XF, Xia XC, Sun GL, Ma CX, Chang C (2016b) Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Front Plant Sci 7:1902. (PMID: 280664625167734)
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genet 45:707–711. (PMID: 10.1038/ng.2612)
Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282. (PMID: 10.1093/bioinformatics/8.3.275)
Kabir MR, Backhouse D, Winter G, Nonhebel HM (2020) Expression of TaTAR2.3-1B, TaYUC9-1 and TaYUC10 correlates with auxin and starch content of developing wheat grains. bioRxiv.
Kawahara Y, Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou J, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4. (PMID: 10.1186/1939-8433-6-4)
Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, Humphrey J, Kerhornou A, Khobova J, Aranganathan NK, Langridge N, Lowy E, McDowall MD, Maheswari U, Nuhn M, Ong CK, Overduin B, Paulini M, Pedro H, Perry E, Spudich G, Tapanari E, Walts B, Williams G, Tello-Ruiz M, Stein J, Wei S, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Maslen G, Staines DM (2015) Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–D580. (PMID: 10.1093/nar/gkv1209)
Kumar A, Mantovani EE, Simsek S, Jain S, Elias EM, Mergoum M (2019) Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross. PLoS ONE 14:e0221826. (PMID: 10.1371/journal.pone.0221826)
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. (PMID: 10.1093/molbev/msw054)
Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32. (PMID: 10.1016/j.pbi.2016.05.008)
Li N, Yin N, Niu Z, Hui W, Song J, Huang C, Wang H, Kong L, Febg D (2014) Isolation and characterization of three TaYUC10 genes from wheat. Gene 546:187–194. (PMID: 10.1016/j.gene.2014.06.020)
Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C (2015) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci 112:11102–11107. (PMID: 10.1073/pnas.1512748112)
Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582. (PMID: 10.1038/nprot.2006.236)
Nonhebel HM, Griffin K (2020) Production and roles of IAA and ABA during development of superior and inferior rice grains. Funct Plant Biol 47:716–726. (PMID: 10.1071/FP19291)
RamírezGonzález RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, International Wheat Genome Sequencing Consortium, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C (2018) The transcriptional landscape of polyploid wheat. Science 361:6089. (PMID: 10.1126/science.aar6089)
Seifert F, Bössow S, Kumlehn J, Gnad H, Scholten S (2016) Analysis of wheat microspore embryogenesis induction by transcriptome and small RNA sequencing using the highly responsive cultivar “Svilena.” BMC Plant Biol 16:97. (PMID: 10.1186/s12870-016-0782-8)
Shao A, Ma W, Zhao X, Hu M, He X, Teng W, Li H, Tong Y (2017) The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases wheat grain yield. Plant Physiol 174:2274–2288. (PMID: 10.1104/pp.17.00094)
Sukumaran S, Lopes M, Dreisigacker S, Reynolds M (2018) Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theor Appl Genet 131:985–998. (PMID: 10.1007/s00122-017-3037-7)
Szerszen JB, Szczyglowski K, Bandurski RS (1994) iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265:1699–1701. (PMID: 10.1126/science.8085154)
Zou T, Li S, Liu M, Wang T, Xiao Q, Chen D, Li Q, Liang Y, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Wang L, Li P (2017) An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice. Sci Rep 7:6863. (PMID: 10.1038/s41598-017-07064-4)
Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166. (PMID: 10.1016/B978-1-4832-2734-4.50017-6)
Entry Date(s) :
Date Created: 20210309 Latest Revision: 20210309
Update Code :
Czasopismo naukowe
Key Message: Phylogenetic and expression analyses of grain weight genes TaTGW6 and OsTGW6 and investigation of substrate availability indicate TGW6 does not regulate auxin content of grains but may affect pollen development. The THOUSAND-GRAIN WEIGHT 6 genes (TaTGW6 and OsTGW6) are reported to result in larger grains of wheat and rice by reducing production of indole-3-acetic acid (IAA) in developing grains. However, a critical comparison of data on TaTGW6 and OsTGW6 with other reports on IAA synthesis in cereal grains requires that this hypothesis be reinvestigated. Here, we show that TaTGW6 and OsTGW6 are members of a large gene family that has undergone major, lineage-specific gene expansion. Wheat has nine genes, and rice three genes encoding proteins with more than 80% amino acid identity with TGW6, making it difficult to envisage how a single inactive allele could have a major effect on IAA levels in grains. In our study, we show that neither TaTGW6 nor OsTGW6 is expressed in developing grains. Instead, both genes and their close homologues are exclusively expressed in pre-emergent inflorescences; TaTGW6 is expressed particularly in microspores prior to mitosis. This evidence, combined with our observation that developing wheat grains have undetectable levels of ester IAA in comparison to free IAA and do not express an IAA-glucose synthase suggests that TaTGW6 and OsTGW6 do not regulate grain size via the hydrolysis of IAA-glucose. Instead, their similarity to rice strictosidine synthase-like (OsSTRL2) suggests they play a key role in pollen development.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies