Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Ex Vivo Model of Spontaneous Neuroretinal Degeneration for Evaluating Stem Cells' Paracrine Properties.

Tytuł:
Ex Vivo Model of Spontaneous Neuroretinal Degeneration for Evaluating Stem Cells' Paracrine Properties.
Autorzy:
Fernandez-Bueno I; Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén 17, Valladolid, Spain. .; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain. .; Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain. .
Usategui-Martin R; Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén 17, Valladolid, Spain.
Źródło:
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2021; Vol. 2269, pp. 125-137.
Typ publikacji:
Evaluation Study; Journal Article
Język:
English
Imprint Name(s):
Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
MeSH Terms:
Models, Neurological*
Paracrine Communication*
Retina*/metabolism
Retina*/pathology
Retinal Degeneration*/metabolism
Retinal Degeneration*/pathology
Stem Cells*/metabolism
Stem Cells*/pathology
Animals ; Coculture Techniques ; Humans
References:
Caffé AR, Visser H, Jansen HG, Sanyal S (1989) Histotypic differentiation of neonatal mouse retina in organ culture. Curr Eye Res 8:1083–1092. https://doi.org/10.3109/02713688908997401. (PMID: 10.3109/027136889089974012612197)
Strangeways T, Honor B (1926) Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro. II The development of the isolated early embryonic eye of the fowl when cultivated in vitro. Proc R Soc L B 100:273–283. (PMID: 10.1098/rspb.1926.0049)
Tansley K (1933) The formation of rosettes in the rat retina. Br J Ophthalmol 17:321–336. https://doi.org/10.1136/bjo.17.6.321. (PMID: 10.1136/bjo.17.6.32118169123511557)
Trowell O (1954) A modified technique for organ culture in vitro. Exp Cell Res 6:246–248. https://doi.org/10.1016/0014-4827(54)90169-X. (PMID: 10.1016/0014-4827(54)90169-X13142005)
Rettinger CL, Wang H-C (2018) Current advancements in the development and characterization of full-thickness adult neuroretina organotypic culture systems. Cells Tissues Organs 206:119–132. https://doi.org/10.1159/000497296. (PMID: 10.1159/00049729630879015)
Ogilvie JM, Speck JD, Lett JM, Fleming TT (1999) A reliable method for organ culture of neonatal mouse retina with long-term survival. J Neurosci Methods 87:57–65. (PMID: 10.1016/S0165-0270(98)00157-5)
Fernandez-Bueno I, Fernández-Sánchez L, Gayoso MJMJ et al (2012) Time course modifications in organotypic culture of human neuroretina. Exp Eye Res 104:26–38. https://doi.org/10.1016/j.exer.2012.08.012. (PMID: 10.1016/j.exer.2012.08.01223022403)
Osborne A, Hopes M, Wright P et al (2016) Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration. Exp Eye Res 143:28–38. https://doi.org/10.1016/j.exer.2015.09.012. (PMID: 10.1016/j.exer.2015.09.01226432917)
Labrador-Velandia S, Alonso-Alonso ML, Di Lauro S et al (2019) Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures. Exp Eye Res 185:107671. https://doi.org/10.1016/j.exer.2019.05.011. (PMID: 10.1016/j.exer.2019.05.01131108056)
Caffé AR, Ahuja P, Holmqvist B et al (2001) Mouse retina explants after long-term culture in serum free medium. J Chem Neuroanat 22:263–273. (PMID: 10.1016/S0891-0618(01)00140-5)
Lucas D, Trowell O (1958) In vitro culture of the eye and the retina of the mouse and rat. J Embryol Exp Morphol 6:178–182. (PMID: 13539279)
Lucas D (1958) Inherited retinal dystrophy in the mouse: its appearance in eyes and retinae cultured in vitro. J Embryol Exp Morphol 6:589–592. (PMID: 13611137)
Sidman R (1963) Organ-culture analysis of inherited retinal degeneration in rodents. Natl Cancer Inst Monogr 11:227–246. (PMID: 13988912)
Tamai M, Takahashi J, Noji T, Mizuno K (1978) Development of photoreceptor cells in vitro: influence and phagocytic activity of homo- and heterogenic pigment epithelium. Exp Eye Res 26:581–590. https://doi.org/10.1016/0014-4835(78)90069-6. (PMID: 10.1016/0014-4835(78)90069-6658170)
Caffé A, Söderpalm A, van Veen T (1993) Photoreceptor-specific protein expression of mouse retina in organ culture and retardation of rd degeneration in vitro by a combination of basic fibroblast and nerve growth factors. Curr Eye Res 12:719–726. https://doi.org/10.3109/02713689308995767. (PMID: 10.3109/027136893089957678222732)
Engelsberg K, Johansson K, Ghosh F (2005) Development of the embryonic porcine neuroretina in vitro. Ophthalmic Res 37:104–111. https://doi.org/10.1159/000084252. (PMID: 10.1159/00008425215746566)
Feigenspan A, Bormann J, Wässle H (1993) Organotypic slice culture of the mammalian retina. Vis Neurosci 10:203–217. https://doi.org/10.1017/s0952523800003618. (PMID: 10.1017/s09525238000036188485085)
Katsuki H, Yamamoto R, Nakata D et al (2004) Neuronal nitric oxide synthase is crucial for ganglion cell death in rat retinal explant cultures. J Pharmacol Sci 94:77–80. https://doi.org/10.1254/jphs.94.77. (PMID: 10.1254/jphs.94.7714745122)
Peynshaert K, Devoldere J, Forster V et al (2017) Toward smart design of retinal drug carriers: a novel bovine retinal explant model to study the barrier role of the vitreoretinal interface. Drug Deliv 24:1384–1394. https://doi.org/10.1080/10717544.2017.1375578. (PMID: 10.1080/10717544.2017.137557828925755)
Alt A, Hilgers R-D, Tura A et al (2013) The neuroprotective potential of rho-kinase inhibition in promoting cell survival and reducing reactive gliosis in response to hypoxia in isolated bovine retina. Cell Physiol Biochem 32:218–234. https://doi.org/10.1159/000350138. (PMID: 10.1159/00035013823899884)
Winkler J, Hagelstein S, Rohde M, Laqua H (2002) Cellular and cytoskeletal dynamics within organ cultures of porcine neuroretina. Exp Eye Res 74:777–788. https://doi.org/10.1006/exer.2002.1188. (PMID: 10.1006/exer.2002.118812126951)
Di Lauro S, Rodriguez-Crespo D, Gayoso MJMJ et al (2016) A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Mol Vis 22:243–253. (PMID: 270812954812504)
Fernandez-Bueno I, Pastor JCJC, Gayoso MJMJ et al (2008) Müller and macrophage-like cell interactions in an organotypic culture of porcine neuroretina. Mol Vis 14:2148–2156. (PMID: 190526552593001)
Cossenza M, Cadilhe DV, Coutinho RN, Paes-de-Carvalho R (2006) Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: a new mechanism for the regulation of nitric oxide production. J Neurochem 97:1481–1493. https://doi.org/10.1111/j.1471-4159.2006.03843.x. (PMID: 10.1111/j.1471-4159.2006.03843.x16606372)
Hartani D, Belguendouz H, Guenane H et al (2006) Effect of nitrites and nitrates on bovine retina in vitro. J Fr Ophtalmol 29:32–36. https://doi.org/10.1016/s0181-5512(06)73744-5. (PMID: 10.1016/s0181-5512(06)73744-516465121)
Lahmar-Belguendouz K, Belguendouz H, Hartani D et al (2009) Deleterious effects of stable nitric oxide derivatives, a uveitis inflammatory marker, on cultured bovine ocular layers. J Fr Ophtalmol 32:247–256. https://doi.org/10.1016/j.jfo.2009.01.010. (PMID: 10.1016/j.jfo.2009.01.01019769855)
Allamby D, Foreman D, Carrington L et al (1997) Cell attachment to, and contraction of, the retina in vitro. Invest Ophthalmol Vis Sci 38:2064–2072. (PMID: 9331270)
Koizumi A, Zeck G, Ben Y et al (2007) Organotypic culture of physiologically functional adult mammalian retinas. PLoS One 2:e221. https://doi.org/10.1371/journal.pone.0000221. (PMID: 10.1371/journal.pone.0000221173110971794165)
Fernandez-Bueno I, Garcia-Gutierrez MT, Srivastava GK et al (2013) Adalimumab (tumor necrosis factor-blocker) reduces the expression of glial fibrillary acidic protein immunoreactivity increased by exogenous tumor necrosis factor alpha in an organotypic culture of porcine neuroretina. Mol Vis 19:894–903. (PMID: 236874263654850)
Gaub BM, Berry MH, Holt AE et al (2014) Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc Natl Acad Sci U S A 111:E5574–E5583. https://doi.org/10.1073/pnas.1414162111. (PMID: 10.1073/pnas.1414162111254890834280620)
Taylor L, Arnér K, Ghosh F (2017) Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants. Exp Eye Res 154:10–21. https://doi.org/10.1016/j.exer.2016.11.002. (PMID: 10.1016/j.exer.2016.11.00227816538)
Syed H, Safa R, Chidlow G, Osborne NN (2006) Sulfisoxazole, an endothelin receptor antagonist, protects retinal neurones from insults of ischemia/reperfusion or lipopolysaccharide. Neurochem Int 48:708–717. https://doi.org/10.1016/j.neuint.2005.12.007. (PMID: 10.1016/j.neuint.2005.12.00716464516)
Delyfer M-N, Simonutti M, Neveux N et al (2005) Does GDNF exert its neuroprotective effects on photoreceptors in the rd1 retina through the glial glutamate transporter GLAST? Mol Vis 11:677–687. (PMID: 16163265)
Franke AG, Gubbe C, Beier M, Duenker N (2006) Transforming growth factor-beta and bone morphogenetic proteins: cooperative players in chick and murine programmed retinal cell death. J Comp Neurol 495:263–278. https://doi.org/10.1002/cne.20869. (PMID: 10.1002/cne.2086916440295)
Lagrèze WA, Pielen A, Steingart R et al (2005) The peptides ADNF-9 and NAP increase survival and neurite outgrowth of rat retinal ganglion cells in vitro. Investig Ophthalmol Vis Sci 46:933–938. https://doi.org/10.1167/iovs.04-0766. (PMID: 10.1167/iovs.04-0766)
García M, Forster V, Hicks D, Vecino E (2002) Effects of müller glia on cell survival and neuritogenesis in adult porcine retina in vitro. Invest Ophthalmol Vis Sci 43:3735–3743. (PMID: 12454045)
Mayazur Rahman S, Reichenbach A, Zink M, Mayr SG (2016) Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds. Soft Matter 12:3431–3441. https://doi.org/10.1039/c6sm00293e. (PMID: 10.1039/c6sm00293e26947970)
Saikia P, Maisch T, Kobuch K et al (2006) Safety testing of indocyanine green in an ex vivo porcine retina model. Invest Ophthalmol Vis Sci 47:4998–5003. https://doi.org/10.1167/iovs.05-1665. (PMID: 10.1167/iovs.05-166517065519)
Pastor JC, Coco RM, Fernandez-Bueno I et al (2017) Acute retinal damage after using a toxic perfluoro-octane for vitreo-retinal surgery. Retina 37:1140. https://doi.org/10.1097/IAE.0000000000001680. (PMID: 10.1097/IAE.000000000000168028538613)
Johnson TV, Martin KR (2008) Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci 49:3503–3512. https://doi.org/10.1167/iovs.07-1601. (PMID: 10.1167/iovs.07-160118408186)
Rodriguez-Crespo D, Di Lauro S, Singh AKAK et al (2014) Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res 358:705–716. https://doi.org/10.1007/s00441-014-1987-5. (PMID: 10.1007/s00441-014-1987-525213807)
Mollick T, Mohlin C, Johansson K (2016) Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina. Brain Res 1646:522–534. https://doi.org/10.1016/J.BRAINRES.2016.06.039. (PMID: 10.1016/J.BRAINRES.2016.06.03927369448)
Jones MK, Lu B, Chen DZ et al (2019) In vitro and in vivo proteomic comparison of human neural progenitor cell-induced photoreceptor survival. Proteomics 19:1800213. https://doi.org/10.1002/pmic.201800213. (PMID: 10.1002/pmic.201800213)
Niyadurupola N, Sidaway P, Osborne A et al (2011) The development of human organotypic retinal cultures (HORCs) to study retinal neurodegeneration. Br J Ophthalmol 95:720–726. https://doi.org/10.1136/bjo.2010.181404. (PMID: 10.1136/bjo.2010.18140421169273)
Carter DA, Dick AD (2003) Lipopolysaccharide/interferon-gamma and not transforming growth factor beta inhibits retinal microglial migration from retinal explant. Br J Ophthalmol 87:481–487. https://doi.org/10.1136/bjo.87.4.481. (PMID: 10.1136/bjo.87.4.481126423151771595)
Carter DA, Dick AD (2004) CD200 maintains microglial potential to migrate in adult human retinal explant model. Curr Eye Res 28:427–436. https://doi.org/10.1080/02713680490503778. (PMID: 10.1080/0271368049050377815512951)
Balasubramaniam B, Carter DA, Mayer EJ, Dick AD (2009) Microglia derived IL-6 suppresses neurosphere generation from adult human retinal cell suspensions. Exp Eye Res 89:757–766. https://doi.org/10.1016/j.exer.2009.06.019. (PMID: 10.1016/j.exer.2009.06.01919596318)
Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417. (PMID: 10.1126/science.1190897)
Carr AJ, Vugler A, Lawrence J et al (2009) Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis 15:283–295. (PMID: 192047852635847)
Murali A, Ramlogan-Steel CA, Andrzejewski S et al (2019) Retinal explant culture: a platform to investigate human neuro-retina. Clin Exp Ophthalmol 47:274–285. https://doi.org/10.1111/ceo.13434. (PMID: 10.1111/ceo.1343430378239)
Johnson TV, DeKorver NW, Levasseur VA et al (2014) Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain 137:503–519. https://doi.org/10.1093/brain/awt292. (PMID: 10.1093/brain/awt29224176979)
Osborne A, Sanderson J, Martin KR (2018) Neuroprotective effects of human mesenchymal stem cells and platelet-derived growth factor on human retinal ganglion cells. Stem Cells 36:65–78. https://doi.org/10.1002/stem.2722. (PMID: 10.1002/stem.272229044808)
Contributed Indexing:
Keywords: Advanced therapies; Cell therapy; Ex vivo neuroretina; Neuroprotection; Neuroretina; Paracrine properties; Retinal degeneration; Stem cells
Entry Date(s):
Date Created: 20210309 Date Completed: 20210401 Latest Revision: 20210401
Update Code:
20240105
DOI:
10.1007/978-1-0716-1225-5_9
PMID:
33687676
Czasopismo naukowe
Ex vivo neuroretina cultures closely resemble in vivo conditions, retaining the complex neuroretina cells dynamics, connections, and functionality, under controlled conditions. Therefore, these models have allowed advancing in the knowledge of retinal physiology and pathobiology over the years. Furthermore, the ex vivo neuroretina models represent an adequate tool for evaluating stem cell therapies over neuroretinal degeneration processes.Here, we describe a physically separated co-culture of neuroretina explants with stem cells to evaluate the effect of stem cells paracrine properties on spontaneous neuroretinal degeneration.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies