Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

An exploratory study to investigate the association between age, physical activity, femoral trochlear cartilage thickness and biomarkers of tissue metabolism in adult males.

Tytuł :
An exploratory study to investigate the association between age, physical activity, femoral trochlear cartilage thickness and biomarkers of tissue metabolism in adult males.
Autorzy :
Roberts HM; School of Sport, Health and Exercise Sciences, Physical Activity for Health and Well Being (PAWB) Research Group, Bangor University, Bangor, UK. .; School of Biosciences and Medicine, University of Surrey, The Leggett Building, Daphne Jackson Road, Guildford, GU2 7WG, UK. .
Griffith-McGeever CL; School of Sport, Health and Exercise Sciences, Physical Activity for Health and Well Being (PAWB) Research Group, Bangor University, Bangor, UK.
Owen JA; School of Sport, Health and Exercise Sciences, Physical Activity for Health and Well Being (PAWB) Research Group, Bangor University, Bangor, UK.
Angell L; School of Sport, Health and Exercise Sciences, Physical Activity for Health and Well Being (PAWB) Research Group, Bangor University, Bangor, UK.
Moore JP; School of Sport, Health and Exercise Sciences, Physical Activity for Health and Well Being (PAWB) Research Group, Bangor University, Bangor, UK.
Thom JM; School of Sport, Health and Exercise Sciences, Physical Activity for Health and Well Being (PAWB) Research Group, Bangor University, Bangor, UK.; School of Medical Sciences, University of New South Wales, Sydney, Australia.
Pokaż więcej
Źródło :
European journal of applied physiology [Eur J Appl Physiol] 2021 Jul; Vol. 121 (7), pp. 1871-1880. Date of Electronic Publication: 2021 Mar 13.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Berlin ; New York : Springer-Verlag, c2000-
References :
Abusara Z, Krawetz R, Steele B et al (2013) Muscular loading of joints triggers cellular secretion of PRG4 into the joint fluid. J Biomech 46:1225–1230. https://doi.org/10.1016/j.jbiomech.2013.02.027. (PMID: 10.1016/j.jbiomech.2013.02.02723506642)
Baecke JA, Burema J, Frijters JE (1982) A short questionanaire for the measuremnet of habitual physical activity in epidemiological studies. Am J Clin Nutr 36:936–942. (PMID: 10.1093/ajcn/36.5.936)
Beckwée D, Vaes P, Cnudde M et al (2013) Osteoarthritis of the knee: why does exercise work? A qualitative study of the literature. Ageing Res Rev 12:226–236. https://doi.org/10.1016/j.arr.2012.09.005. (PMID: 10.1016/j.arr.2012.09.00523026409)
Catterall JB, Thomas V, Flannery CRS, Kraus VB et al (2010) Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254). Arthritis Res Ther 12:R229. https://doi.org/10.1186/ar3216. (PMID: 10.1186/ar3216211944413046542)
Clark AG, Jordan JM, Vilim V et al (1999) Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the Johnston County Osteoarthritis Project. Arthritis Rheum 42:2356–2364. https://doi.org/10.1002/1529-0131(199911)42:11%3c2356::AID-ANR14%3e3.0.CO;2-R. (PMID: 10.1002/1529-0131(199911)42:11<2356::AID-ANR14>3.0.CO;2-R10555031)
Craig CL, Marshall AL, Sjöström M et al (2003) International physical activity questionnaire: 12-Country reliability and validity. Med Sci Sports Exerc 35:1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB. (PMID: 10.1249/01.MSS.0000078924.61453.FB1290069412900694)
Criscione LG, Elliott AL, Stabler T et al (2005) Variation of serum hyaluronan with activity in individuals with knee osteoarthritis. Osteoarthr Cartil 13:837–840. https://doi.org/10.1016/j.joca.2005.05.004. (PMID: 10.1016/j.joca.2005.05.004)
Ding C, Cicuttini F, Scott F et al (2005) Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis 64:549–555. https://doi.org/10.1136/ard.2004.023069. (PMID: 10.1136/ard.2004.023069157699151755432)
Elahi S, Cahue S, Felson DT et al (2000) The association between varus-valgus alignment and patellofemoral osteoarthritis. Arthritis Rheum. https://doi.org/10.1002/1529-0131(200008)43:8%3c1874::AID-ANR25%3e3.0.CO;2-2. (PMID: 10.1002/1529-0131(200008)43:8<1874::AID-ANR25>3.0.CO;2-210943879)
El-Arman MM, El-Fayoumi G, El-Shal E et al (2010) Aggrecan and cartilage oligomeric matrix protein in serum and synovial fluid of patients with knee osteoarthritis. Musculoskelet J Hosp Spec Surg 6:171–176. https://doi.org/10.1007/s11420-010-9157-0. (PMID: 10.1007/s11420-010-9157-0)
Elliott AL, Kraus VB, Luta G et al (2005) Serum hyaluronan levels and radiographic knee and hip osteoarthritis in African Americans and caucasians in the Johnston county osteoarthritis project. Arthritis Rheum 52:105–111. https://doi.org/10.1002/art.20724. (PMID: 10.1002/art.2072415641044)
Elsaid KA, Zhang L, Waller K et al (2012) The impact of forced joint exercise on lubricin biosynthesis from articular cartilage following ACL transection and intra-articular lubricin’s effect in exercised joints following ACL transection. Osteoarthr Cartil 20:940–948. https://doi.org/10.1016/j.joca.2012.04.021. (PMID: 10.1016/j.joca.2012.04.021)
Felson DT, Nui J, Clancy M et al (2007) Effect of recreational physical activities on the development of knee osteoarthritis in older adults of different weights: the Framingham study. Arthritis Care Res. https://doi.org/10.1002/art.22464. (PMID: 10.1002/art.22464)
Foley S, Ding C, Cicuttini F, Jones G (2007) Physical activity and knee structural change: a longitudinal study using MRI. Med Sci Sports Exerc 39:426–434. https://doi.org/10.1249/mss.0b013e31802d97c6. (PMID: 10.1249/mss.0b013e31802d97c617473768)
Fox S, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468. https://doi.org/10.1177/1941738109350438. (PMID: 10.1177/1941738109350438)
Hanna F, Ebeling PR, Wang Y et al (2005) Factors influencing longitudinal change in knee cartilage volume measured from magnetic resonance imaging in healthy men. Ann Rheum Dis 64:1038–1042. https://doi.org/10.1136/ard.2004.029355. (PMID: 10.1136/ard.2004.029355156402701755566)
Hinman RS, Crossley KM (2007) Patellofemoral joint osteoarthritis: an important subgroup of knee osteoarthritis. Rheumatology (Oxford) 46:1057–1062. https://doi.org/10.1093/rheumatology/kem114. (PMID: 10.1093/rheumatology/kem114)
Hovis KK, Stehling C, Souza RB et al (2011) Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum 63:2248–2256. https://doi.org/10.1002/art.30419. (PMID: 10.1002/art.30419215383283149726)
Hudelmaier M, Glaser C, Hohe J et al (2001) Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum 44:2556–2561. (PMID: 10.1002/1529-0131(200111)44:11<2556::AID-ART436>3.0.CO;2-U)
Inoue R, Ishibashi Y, Tsuda E et al (2011) Knee osteoarthritis, knee joint pain and aging in relation to increasing serum hyaluronan level in the Japanese population. Osteoarthr Cartil 19:51–57. https://doi.org/10.1016/j.joca.2010.10.021. (PMID: 10.1016/j.joca.2010.10.021)
Jordan JM, Luta G, Stabler T et al (2003) Ethnic and sex differences in serum levels of cartilage oligomeric matrix protein: the Johnston county osteoarthritis project. Arthritis Rheum 48:675–681. https://doi.org/10.1002/art.10822. (PMID: 10.1002/art.1082212632420)
Kujala UM, Kettunen J, Paananen H et al (1995) Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters. Arthritis Rheum 38:539–546. https://doi.org/10.1002/art.1780380413. (PMID: 10.1002/art.17803804137718008)
Lane NE, Michel B, Bjorkengren A, et al (1993) The risk of osteoarthritis with running and aging: A 5-year longitudinal study. J Rheumatol.
Law R-J, Saynor ZL, Gabbitas J et al (2015) The effects of aerobic and resistance exercise on markers of large joint health in stable rheumatoid arthritis patients: a pilot study. Musculoskeletal Care 13:222–235. https://doi.org/10.1002/msc.1103. (PMID: 10.1002/msc.110325962747)
Li Y, Wei X, Zhou J, Wei L (2013) The age-related changes in cartilage and osteoarthritis. Biomed Res Int. https://doi.org/10.1155/2013/916530. (PMID: 10.1155/2013/916530244901713892754)
Lin W, Alizai H, Joseph GB et al (2013) Physical activity in relation to knee cartilage T2 progression measured with 3tmri over a period of 4 years: data from the osteoarthritis initiative. Osteoarthr Cartil 21:1558–1566. https://doi.org/10.1016/j.joca.2013.06.022. (PMID: 10.1016/j.joca.2013.06.022)
Liphardt AM, Mündermann A, Andriacchi TP et al (2018) Sensitivity of serum concentration of cartilage biomarkers to 21-days of bed rest. J Orthop Res 36:1465–1470. https://doi.org/10.1002/jor.23786. (PMID: 10.1002/jor.23786)
Martin JA, Buckwalter JA (2002) Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3:257–264. https://doi.org/10.1023/A:1020185404126. (PMID: 10.1023/A:10201854041261223756212237562)
Naredo E, Acebes C, Möller I et al (2009) Ultrasound validity in the measurement of knee cartilage thickness. Ann Rheum Dis 68:1322–1327. https://doi.org/10.1136/ard.2008.090738. (PMID: 10.1136/ard.2008.09073818684742)
Neidhart M, Müller-Ladner U, Frey W et al (2000) Increased serum levels of non-collagenous matrix proteins (cartilage oligomeric matrix protein and melanoma inhibitory activity) in marathon runners. Osteoarthr Cartil 8:222–229. https://doi.org/10.1053/joca.1999.0293. (PMID: 10.1053/joca.1999.0293)
Nelson AE, Allen KD, Golightly YM et al (2014) A systematic review of recommendations and guidelines for the management of osteoarthritis: The chronic osteoarthritis management initiative of the U.S. bone and joint initiative. Semin Arthritis Rheum 43:701–712. https://doi.org/10.1016/j.semarthrit.2013.11.012. (PMID: 10.1016/j.semarthrit.2013.11.01224387819)
Özçakar L, Tunç H, Öken Ö et al (2014) Femoral cartilage thickness measurements in healthy individuals: learning, practicing and publishing with TURK-MUSCULUS. J Back Musculoskelet Rehabil 27:117–124. https://doi.org/10.3233/BMR-130441. (PMID: 10.3233/BMR-13044124284270)
Pate RR (1995) Physical activity and public health. JAMA 273:402. https://doi.org/10.1001/jama.1995.03520290054029. (PMID: 10.1001/jama.1995.035202900540297823386)
Racunica TL, Teichtahl AJ, Wang Y et al (2007) Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheum 57:1261–1268. https://doi.org/10.1002/art.22990. (PMID: 10.1002/art.2299017907212)
Roberts HM (2017) The Effect of Exercise and Ageing on Morphology and Biomarkers of Knee Articular Cartilage in Healthy Humans.
Roberts HM, Moore JP, Thom JM (2018) The reliability of suprapatellar transverse sonographic assessment of femoral trochlear cartilage thickness in healthy adults. J Ultrasound Med. https://doi.org/10.1002/jum.14775. (PMID: 10.1002/jum.1477530208236)
Roberts HM, Law RJ, Thom JM (2019) The time course and mechanisms of change in biomarkers of joint metabolism in response to acute exercise and chronic training in physiologic and pathological conditions. Eur J Appl Physiol. https://doi.org/10.1007/s00421-019-04232-4. (PMID: 10.1007/s00421-019-04232-4316503076858392)
Rogers LQ, Macera CA, Hootman JM et al (2002) The association between joint stress from physical activity and self-reported osteoarthritis: an analysis of the Cooper clinic data. Osteoarthr Cartil 10:617–622. https://doi.org/10.1053/joca.2002.0802. (PMID: 10.1053/joca.2002.0802)
Saxne T, Heinegard D, Heinegård D (1992) Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br J Rheumatol 31:583–591. (PMID: 10.1093/rheumatology/31.9.583)
Seebeck P, Haima P (2013) Hyaluronic Acid (Hyaluronan) Biomarker for liver fibrosis and cirrhosis, joint disease, inflammation and others. TECOmedical Clin Tech Rev 1–16.
Senolt L, Braun M, Olejarova M et al (2005) Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann Rheum Dis 64:886–890. https://doi.org/10.1136/ard.2004.029140. (PMID: 10.1136/ard.2004.029140158973091755507)
Sharif M, Saxne T, Shepstone L et al (1995) Relationship between serum cartilage oligomeric matrix protein levels and disease progression in osteoarthritis of the knee joint. Br J Rheumatol 34:306–310. (PMID: 10.1093/rheumatology/34.4.306)
Spector TD, Cicuttini F, Baker J et al (1996) Genetic influences on osteoarthritis in women: a twin study. Br Med J 312:940–943. https://doi.org/10.1136/bmj.312.7036.940. (PMID: 10.1136/bmj.312.7036.940)
Teichtahl AJ, Wluka AE, Forbes A et al (2009) Longitudinal effect of vigorous physical activity on patella cartilage morphology in people without clinical knee disease. Arthritis Rheum 61:1095–1102. https://doi.org/10.1002/art.24840. (PMID: 10.1002/art.2484019644895)
Urquhart DM, Soufan C, Teichtahl AJ et al (2008) Factors that may mediate the relationship between physical activity and the risk for developing knee osteoarthritis. Arthritis Res Ther 10:1–10. https://doi.org/10.1186/ar2343. (PMID: 10.1186/ar2343)
Vanwanseele B, Eckstein F, Knecht H et al (2002) Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum 46:2073–2078. https://doi.org/10.1002/art.10462. (PMID: 10.1002/art.1046212209511)
Virayavanich W, Alizai H, Baum T et al (2013) Association of frequent knee bending activity with focal knee lesions detected with 3T magnetic resonance imaging: data from the osteoarthritis initiative. Arthritis Care Res 65:1441–1448. https://doi.org/10.1002/acr.22017. (PMID: 10.1002/acr.22017)
Wakitani S, Nawata M, Kawaguchi A et al (2007) Serum keratan sulfate is a promising marker of early articular cartilage breakdown. Rheumatology (Oxford) 46:1652–1656. https://doi.org/10.1093/rheumatology/kem220. (PMID: 10.1093/rheumatology/kem220)
Wang Y, Wluka AE, Jones G et al (2012) Use magnetic resonance imaging to assess articular cartilage. Ther Adv Musculoskelet Dis 4:77–97. https://doi.org/10.1177/1759720X11431005. (PMID: 10.1177/1759720X11431005228704973383521)
Warburton DER, Nicol CW, Bredin SSD (2006) Health benefits of physical activity: the evidence. CMAJ 174:801–809. https://doi.org/10.1503/cmaj.051351. (PMID: 10.1503/cmaj.05135114023781402378)
Young AA, McLennan S, Smith MM et al (2006) Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther 8:R41. https://doi.org/10.1186/ar1898. (PMID: 10.1186/ar1898164691191526595)
Contributed Indexing :
Keywords: Age; Cartilage metabolism; Joint lubrication; Knee cartilage thickness; Ultrasound
Entry Date(s) :
Date Created: 20210313 Latest Revision: 20210611
Update Code :
20210611
DOI :
10.1007/s00421-021-04655-y
PMID :
33713200
Czasopismo naukowe
Purpose: To investigate the association between age, physical activity, femoral trochlear cartilage thickness and biomarkers of tissue metabolism in a cross-sectional sample of adult males. This study utilizes several emerging biomarkers that have been associated with early joint degenerative changes; serum COMP (cartilage oligomeric matrix protein), HA (hyaluronan) and lubricin.
Methods: Eighty-one males (age: mean (range): 43(18-70) years; body mass index: 25.2 (21.0-30.6) kg/m 2 ) volunteered. Resting serum COMP, HA and lubricin concentrations were determined via commercially available enzyme-linked immunosorbent assay (ELISA) and femoral trochlear cartilage thickness via supra-patellar ultrasound imaging. Physical activity levels were assessed using questionnaires. Statistical analyses were performed using correlation and regression analyses.
Results: Age was correlated with lateral trochlear cartilage thickness (r = - 0.372; p < 0.01) and serum COMP (r = 0.342; p < 0.01). 7-day physical activity was correlated with serum COMP (r = 0.357, p < 0.01), and 12-month physical activity with both lateral trochlear cartilage thickness (r = 0.340, p = 0.01) and serum HA (r = 0.296, p < 0.05). Regression analyses revealed that age significantly accounted for the variability in lateral cartilage thickness and serum COMP, following the adjustment for potential cofounders. However, the association between age and lateral trochlear cartilage thickness was not moderated by physical activity levels (all p > 0.05).
Conclusion: This study indicates that older age may be associated with thinner lateral trochlear cartilage and higher cartilage turnover. Being physically active may also be positive for lateral trochlear cartilage thickness. However, overall, both age and physical activity level only account for a small amount of the variability in cartilage thickness and serum biomarkers.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies