Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification and candidate gene screening of qCIR9.1, a novel QTL associated with anther culturability in rice (Oryza sativa L.).

Tytuł:
Identification and candidate gene screening of qCIR9.1, a novel QTL associated with anther culturability in rice (Oryza sativa L.).
Autorzy:
Huang C; National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
Zhang J; National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
Zhou D; National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
Huang Y; National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
Su L; National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
Yang G; National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
Luo W; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
Chen Z; National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
Wang H; National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .
Guo T; National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .
Źródło:
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2021 Jul; Vol. 134 (7), pp. 2097-2111. Date of Electronic Publication: 2021 Mar 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin, New York, Springer
MeSH Terms:
Quantitative Trait Loci*
Flowers/*growth & development
Oryza/*genetics
Chromosome Mapping ; Crosses, Genetic ; Phenotype ; Pollen/growth & development ; RNA-Seq ; Transcriptome
References:
Atanassov A, Zagorska N, Boyadjiev P, Djilianov D (1995) In vitro production of haploid plants. World J Microbiol Biotechnol 11:400–408. https://doi.org/10.1007/BF00364615. (PMID: 10.1007/BF0036461524414748)
Bajaj YPS (1990) In vitro production of haploids and their use in cell genetics and plant breeding. In: Bajaj YPS (ed) Haploids in crop improvement I. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3–44. https://doi.org/10.1007/978-3-642-61499-6_1.
Boutilier K, Offringa R, Sharma VK et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749. https://doi.org/10.1105/tpc.001941. (PMID: 10.1105/tpc.00194112172019151462)
Bregitzer P, Campbell R (2001) Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Sci. https://doi.org/10.2135/cropsci2001.411173x. (PMID: 10.2135/cropsci2001.411173x)
Chen T, Dent SYR (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15:93–106. https://doi.org/10.1038/nrg3607. (PMID: 10.1038/nrg360724366184)
Chen L, Gao W, Chen S et al (2016) High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice. Rice (N Y) 9:48–48. https://doi.org/10.1186/s12284-016-0121-6. (PMID: 10.1186/s12284-016-0121-6)
Chu C, Wang C, Sun C et al (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668.
Datta SJCS (2005) Androgenic haploids: factors controlling development and its application in crop improvement. Curr Sci 89:1870–1878.
de Ronne M, Labbé C, Lebreton A et al (2020) Integrated QTL mapping, gene expression and nucleotide variation analyses to investigate complex quantitative traits: a case study with the soybean–Phytophthora sojae interaction. Plant Biotechnol J 18:1492–1494. https://doi.org/10.1111/pbi.13301. (PMID: 10.1111/pbi.1330131749312)
Debernardi JM, Tricoli DM, Ercoli MF et al (2020) A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat Biotechnol 38:1274–1279. https://doi.org/10.1038/s41587-020-0703-0. (PMID: 10.1038/s41587-020-0703-0330468757642171)
Foroughi-Wehr B, Friedt W, Wenzel G (1982) On the genetic improvement of androgenetic haploid formation in Hordeum vulgare L. Theor Appl Genet 62:233–239. https://doi.org/10.1007/BF00276246. (PMID: 10.1007/BF0027624624270616)
Germanà MA (2011a) Anther culture for haploid and doubled haploid production. Plant Cell Tiss Org (PCTOC) 104:283–300. https://doi.org/10.1007/s11240-010-9852-z. (PMID: 10.1007/s11240-010-9852-z)
Germanà MA (2011b) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857. https://doi.org/10.1007/s00299-011-1061-7. (PMID: 10.1007/s00299-011-1061-721431908)
He P, Shen L, Lu C et al (1998) Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol Breed 4:165–172. https://doi.org/10.1023/A:1009692221152. (PMID: 10.1023/A:1009692221152)
Hu L, Yang X, Yuan D et al (2011) GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. Plant Biotechnol J 9:1038–1048. https://doi.org/10.1111/j.1467-7652.2011.00617.x. (PMID: 10.1111/j.1467-7652.2011.00617.x21554528)
Jan A, Kitano H, Matsumoto H, Komatsu S (2006) The rice OsGAE1 is a novel gibberellin-regulated gene and involved in rice growth. Plant Mol Biol 62:439–452. https://doi.org/10.1007/s11103-006-9030-1. (PMID: 10.1007/s11103-006-9030-116915516)
Khanday I, Skinner D, Yang B et al (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91–95. https://doi.org/10.1038/s41586-018-0785-8. (PMID: 10.1038/s41586-018-0785-830542157)
Kong J, Martin-Ortigosa S, Finer J et al (2020) Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot Species. Front Plant Sci 11:572319–572319. https://doi.org/10.3389/fpls.2020.572319. (PMID: 10.3389/fpls.2020.572319331547627585916)
Kumaravel M, Uma S, Backiyarani S et al (2020) Proteomic analysis of somatic embryo development in Musa spp. cv. Grand Naine (AAA). Sci Rep 10:4501. https://doi.org/10.1038/s41598-020-61005-2. (PMID: 10.1038/s41598-020-61005-2321613097066174)
Li S, Yan S, Wang Ah et al (2013) Identification of QTLs associated with tissue culture response through sequencing-based genotyping of RILs derived from 93–11 × Nipponbare in rice (Oryza sativa). Plant Cell Rep 32:103–116. https://doi.org/10.1007/s00299-012-1345-6. (PMID: 10.1007/s00299-012-1345-623064615)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.126211846609)
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8. (PMID: 10.1186/s13059-014-0550-8255162814302049)
Lu K, Li T, He J et al (2017) qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res 46:D1229–D1236. https://doi.org/10.1093/nar/gkx725. (PMID: 10.1093/nar/gkx7255753361)
Luo G, Palmgren M (2020) GRF-GIF chimeras boost plant regeneration. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2020.12.001E. (PMID: 10.1016/j.tplants.2020.12.001E33349565)
Ma J, Deng M, Lv S-Y et al (2016) Identification of QTLs associated with tissue culture response of mature wheat embryos. Springerplus 5:1552–1552. https://doi.org/10.1186/s40064-016-3241-y. (PMID: 10.1186/s40064-016-3241-y276521255021639)
Mallik R, Kundu A, Chaudhuri S (2018) High mobility group proteins: the multifaceted regulators of chromatin dynamics. The Nucleus 61:213–226. https://doi.org/10.1007/s13237-018-0257-4. (PMID: 10.1007/s13237-018-0257-4)
McCouch SR, Cgsnl, (2008) Gene nomenclature system for rice. Rice 1:72–84. https://doi.org/10.1007/s12284-008-9004-9. (PMID: 10.1007/s12284-008-9004-9)
Mishra S, Sanyal I, Amla DV (2012) Changes in protein pattern during different developmental stages of somatic embryos in chickpea. Biol Plantarum 56:613–619. https://doi.org/10.1007/s10535-012-0124-0. (PMID: 10.1007/s10535-012-0124-0)
Moleri S, Cappellano G, Gaudenzi G et al (2011) The HMGB protein gene family in zebrafish: evolution and embryonic expression patterns. Gene Expr Patterns 11:3–11. https://doi.org/10.1016/j.gep.2010.08.006. (PMID: 10.1016/j.gep.2010.08.00620804857)
Niizeki H, Oono K (1968) Induction of haploid rice plant from anther culture. Proc Jpn Acad 44:554–557. https://doi.org/10.2183/pjab1945.44.554. (PMID: 10.2183/pjab1945.44.554)
Nishimura A, Ashikari M, Lin S et al (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA 102:11940. https://doi.org/10.1073/pnas.0504220102. (PMID: 10.1073/pnas.0504220102160914671187985)
Pandit A, Rai V, Bal S et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genom MGG 284:121–136. https://doi.org/10.1007/s00438-010-0551-6. (PMID: 10.1007/s00438-010-0551-6)
Park M, Lee J-H, Han K et al (2019) A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq. Theor Appl Genet 132:515–529. https://doi.org/10.1007/s00122-018-3238-8. (PMID: 10.1007/s00122-018-3238-830426173)
Peng H, Wang K, Chen Z et al (2019) MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res 48:D1085–D1092. https://doi.org/10.1093/nar/gkz921. (PMID: 10.1093/nar/gkz9217145604)
Rajcan I, Boersma JG, Shaw EJ (2011) 4.11—Plant genetic techniques: plant breeder’s toolbox. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd ed. Academic Press, Burlington, pp 133–147. https://doi.org/10.1016/B978-0-08-088504-9.00252-X.
Smykal P (2000) Pollen embryogenesis—the stress mediated switch from gametophytic to sporophytic development. Current status and future prospects. Biol Plantarum 43:481–489. https://doi.org/10.1023/A:1002835330799. (PMID: 10.1023/A:1002835330799)
Suvorova G (2016) Chapter twenty nine—buckwheat tissue cultures and genetic transformation. In: Zhou M, Kreft I, Woo S-H, Chrungoo N, Wieslander G (eds) Molecular breeding and nutritional aspects of buckwheat. Academic Press, pp 365–375. https://doi.org/10.1016/B978-0-12-803692-1.00029-8.
Taguchi-Shiobara F, Lin SY, Tanno K et al (1997) Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor Appl Genet 95:828–833. https://doi.org/10.1007/s001220050632. (PMID: 10.1007/s001220050632)
Taguchi-Shiobara F, Yamamoto T, Yano M et al (2006) Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor Appl Genet 112:968–976. https://doi.org/10.1007/s00122-005-0200-3. (PMID: 10.1007/s00122-005-0200-316418858)
Takeuchi Y, Abe T, Sasahara T (2000) RFLP Mapping of QTLs influencing shoot regeneration from mature seed-derived calli in rice. Crop Sci 40:245–247. https://doi.org/10.2135/cropsci2000.401245x. (PMID: 10.2135/cropsci2000.401245x)
Tang K, Sun X, He Y et al (1998) Anther culture response of wild Oryza species. Plant Breed 117:443–446. https://doi.org/10.1111/j.1439-0523.1998.tb01970.x. (PMID: 10.1111/j.1439-0523.1998.tb01970.x)
Tsay SS, Tsay HS, Chao CY (1986) Cytochemical studies of callus development from microspore in cultured anther of rice. Plant Cell Rep 5:119–123. https://doi.org/10.1007/BF00269249. (PMID: 10.1007/BF0026924924248049)
Wan X, Wu S, Li Z et al (2020) Lipid metabolism: critical roles in male fertility and other aspects of reproductive development in plants. Mol Plant 13:955–983. https://doi.org/10.1016/j.molp.2020.05.009. (PMID: 10.1016/j.molp.2020.05.00932434071)
Wang M, van Bergen S, Van Duijn B (2000) Insights into a key developmental switch and its importance for efficient plant breeding. Plant Physiol 124:523. https://doi.org/10.1104/pp.124.2.523. (PMID: 10.1104/pp.124.2.523110277031539284)
Wang L, Xie W, Chen Y et al (2010) A dynamic gene expression atlas covering the entire life cycle of rice. Plant J 61:752–766. https://doi.org/10.1111/j.1365-313X.2009.04100.x. (PMID: 10.1111/j.1365-313X.2009.04100.x20003165)
Wang C-C, Yu H, Huang J et al (2020) Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol J 18:14–16. https://doi.org/10.1111/pbi.13215. (PMID: 10.1111/pbi.1321531336017)
Zhang D, Liang W, Yin C, Zong J, Gu F, Zhang D (2010) OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol 154:149–162. https://doi.org/10.1104/pp.110.158865. (PMID: 10.1104/pp.110.158865206107052938136)
Zhang K, Su J, Xu M et al (2020) A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat Commun 11:443. https://doi.org/10.1038/s41467-019-14265-0. (PMID: 10.1038/s41467-019-14265-0319743736978460)
Zhang J, Guo T, Yang J et al (2020) QTL mapping and haplotype analysis revealed candidate genes for grain thickness in rice (Oryza sativa L.). Mol Breed 40:50. https://doi.org/10.1007/s11032-020-01128-6. (PMID: 10.1007/s11032-020-01128-6)
Zhao L, Zhou H, Lu L et al (2009) Identification of quantitative trait loci controlling rice mature seed culturability using chromosomal segment substitution lines. Plant Cell Rep 28:247–256. https://doi.org/10.1007/s00299-008-0641-7. (PMID: 10.1007/s00299-008-0641-719023575)
Zhao H, Yao W, Ouyang Y et al (2014) RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res 43:D1018–D1022. https://doi.org/10.1093/nar/gku894. (PMID: 10.1093/nar/gku894252747374384008)
Grant Information:
No. 2018B020206002 Research and Development Plan for Key Areas in Guangdong province; No. CARS-01-1 the earmarked fund for Modern Agro-Industry Technology Research System of the Ministry of Agriculture and Rural Affairs of the People's Republic of China
Entry Date(s):
Date Created: 20210313 Date Completed: 20210922 Latest Revision: 20220908
Update Code:
20240104
DOI:
10.1007/s00122-021-03808-z
PMID:
33713337
Czasopismo naukowe
Key Message: A novel QTL, qCIR9.1, that controls callus induction rate in anther culture was identified on chromosome 9 in rice, and based on RNA-seq data, Os09g0551600 was the most promising candidate gene. Anther culture, a doubled haploid (DH) technique, has become an important technology in many plant-breeding programmes. Although anther culturability is the key factor in this technique, its genetic mechanisms in rice remain poorly understood. In this study, we mapped quantitative trait loci (QTLs) responsible for anther culturability by using 192 recombinant inbred lines (RILs) derived from YZX (Oryza sativa ssp. indica) × 02428 (Oryza sativa ssp. japonica) and a high-density bin map. A total of eight QTLs for anther culturability were detected in three environments. Among these QTLs, a novel major QTL for callus induction rate (CIR) named qCIR9.1 was repeatedly mapped to a ~ 100 kb genomic interval on chromosome 9 and explained 8.39-14.14% of the phenotypic variation. Additionally, RNA sequencing (RNA-seq) was performed for the parents (YZX and 02428), low- (L-Pool) and high-CIR RILs (H-Pool) after 16 and 26 days of culture. By using the RNA of the bulked RILs for background normalization, the number of differentially expressed genes (DEGs) both between the parents and between the bulked RILs after 26 days of culture was drastically reduced to only 78. Among these DEGs, only one gene, Os09g0551600, encoding a high-mobility group (HMG) protein, was located in the candidate region of qCIR9.1. qRT-PCR analysis of Os09g0551600 showed the same results as RNA-seq, and the expression of this gene was decreased in the low-callus-induction parent (YZX) and L-Pool. Our results provide a foundational step for further cloning of qCIR9.1 and will be very useful for improving anther culturability in rice.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies