Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Facing metal stress by multiple strategies: morphophysiological responses of cardoon (Cynara cardunculus L.) grown in hydroponics.

Tytuł:
Facing metal stress by multiple strategies: morphophysiological responses of cardoon (Cynara cardunculus L.) grown in hydroponics.
Autorzy:
Sorrentino MC; Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Cupa Nuova Cintia, 21-80126, Napoli, Italy.
Capozzi F; Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Cupa Nuova Cintia, 21-80126, Napoli, Italy.
Amitrano C; Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100-80055, Portici, Italy.
De Tommaso G; Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Cupa Nuova Cintia, 21-80126, Napoli, Italy.
Arena C; Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Cupa Nuova Cintia, 21-80126, Napoli, Italy. .
Iuliano M; Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Cupa Nuova Cintia, 21-80126, Napoli, Italy.
Giordano S; Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Cupa Nuova Cintia, 21-80126, Napoli, Italy.
Spagnuolo V; Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Cupa Nuova Cintia, 21-80126, Napoli, Italy. .
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2021 Jul; Vol. 28 (28), pp. 37616-37626. Date of Electronic Publication: 2021 Mar 14.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Cynara*
Metals, Heavy*
Soil Pollutants*/analysis
Cadmium ; Crops, Agricultural ; Hydroponics
References:
Angelone M, Bini C (1992) Trace elements concentrations in soils and plants of Western Europe. In: Biogeochemistry of trace metals. Lewis publishers, Boca Raton, pp 19–60.
Arena C, De Maio A, De Nicola F, Santorufo L, Vitale L, Maisto G (2014) Assessment of eco-physiological performance of Quercus ilex L. leaves in urban area by an integrated approach. Water Air Soil Pollut:225–1824. https://doi.org/10.1007/s11270-013-1824-6.
Arena C, Santorufo L, Cataletto PR, Memoli V, Scudiero R, Maisto G (2017a) Eco-physiological and antioxidant responses of holm oak (Quercus ilex L.) leaves to Cd and Pb. Water Air Soil Pollut:228–459. https://doi.org/10.1007/s11270-017-3638-4.
Arena C, Figlioli F, Sorrentino MC, Izzo LG, Capozzi F, Giordano S, Spagnuolo V (2017b) Ultrastructural, protein and photosynthetic alteration induced by Pb and Cd in Cynara cardunculus L. and its potential for phytoremediation. Ecotox Environ Safe 145:83–89. https://doi.org/10.1016/j.ecoenv.2017.07.015. (PMID: 10.1016/j.ecoenv.2017.07.015)
Bilger W, Björkman O (1990) Role of xanthophyll cycle and energy dissipation in differently oriented faces of light–induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosynth Res 25:173–185. (PMID: 10.1007/BF00033159)
Branquinho C, Brown DH (1994) A method for studying the cellular location of lead in lichens. Lichenologist 26:83–90. (PMID: 10.1006/lich.1994.1007)
Branquinho C, Brown DH, Catarino F (1997) The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environ Exp Bot 38:165–179. https://doi.org/10.1016/S0098-8472(97)00015-4. (PMID: 10.1016/S0098-8472(97)00015-4)
Capozzi F, Sorrentino MC, Caporale AG, Fiorentino N, Giordano S, Spagnuolo V (2020) Exploring the phytoremediation potential of Cynara cardunculus: a trial on an industrial soil highly contaminated by heavy metals. Environ Sci Pollut Res 27:9075–9084. https://doi.org/10.1007/s11356-019-07575-9. (PMID: 10.1007/s11356-019-07575-9)
Chandra R, Kang H (2016) Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci Technol 12:55–61. https://doi.org/10.1080/21580103.2015.1044024. (PMID: 10.1080/21580103.2015.1044024)
Chaney RL (2015) How does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmers. Curr Pollut Rep 1:13–22. https://doi.org/10.1007/s40726-015-0002-4. (PMID: 10.1007/s40726-015-0002-4)
Costanzo G, Iesce MR, Naviglio D, Ciaravolo M, Vitale E, Arena C (2020) Comparative studies on different Citrus cultivars: a revaluation of waste mandarin components. Antioxidants 517:1–12. https://doi.org/10.3390/antiox9060517. (PMID: 10.3390/antiox9060517)
De Micco V, Amitrano C, Stinca A, Izzo LG, Zalloni E, Balzano A, Barile R, Conti P, Arena C (2019) Dust accumulation due to anthropogenic impact induces anatomical and photochemical changes in leaves of Centranthus ruber growing on the slope of the Vesuvius volcano. Plant Biol 22:93–102. https://doi.org/10.1111/plb.12966. (PMID: 10.1111/plb.12966)
Devi Prasad PV, Devi Prasad PS (1982) Effects of cadmium, lead and nickel on three freshwater green algae. Water Air Soil Pollut 17:263–268. (PMID: 10.1007/BF00283156)
Figlioli F, Sorrentino MC, Memoli V, Arena C, Maisto G, Giordano S, Capozzi F, Spagnuolo V (2019) Overall plant responses to Cd and Pb metal stress in maize: Growth pattern, ultrastructure, and photosynthetic activity. Environ Sci Pollut Res 26:1781–1790. (PMID: 10.1007/s11356-018-3743-y)
Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 90:87–92. (PMID: 10.1016/S0304-4165(89)80016-9)
George B, Kaur C, Khurdiya DS, Kapoor HC (2004) Antioxidants in tomato (Lycopersicum esculentum) as a function of genotype. Food Chem 84:45–51. (PMID: 10.1016/S0308-8146(03)00165-1)
Gjorgieva D, Panovska TK, Ruskovska T, Bačeva K, Stafilov T (2013) Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. Biomed Res Int 2013:1–6. https://doi.org/10.1155/2013/276417. (PMID: 10.1155/2013/276417)
Haworth M, Killi D, Materassi A, Raschi A and Centritto M (2016) Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology inCrop Species Grown at Elevated [CO2]. Front Plant Sci 7:1568. https://doi.org/10.3389/fpls.2016.01568.
He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ (2015) Heavy metal contamination of soils: sources, indicators, and assessment. J Environ Ind 9:17–18.
Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Col Agric Exp Stn Circ 347:1–32.
John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–75.
Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376(1):105–115. (PMID: 10.1016/0005-2728(75)90209-1)
Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86(1):180–187. (PMID: 10.1111/j.1399-3054.1992.tb01328.x)
Krupa Z, Baszyński T (1995) Some aspects of heavy metals toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reactions. Acta Physiol Plant 17:177–190.
Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51. https://doi.org/10.1007/s11738-010-0581-z. (PMID: 10.1007/s11738-010-0581-z)
Kűpper H, Kűpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophyll using the example of water plants. J Exp Bot 47:259–266. (PMID: 10.1093/jxb/47.2.259)
Lebasky MJ, Sharifi Ashoorabadi A (2001) Changes in Hypericin in different habitats of Goli. Research of Iranian medicinal plants and herbs. Res Inst Fore Rang 11:100–187.
Lichtenthaler HK (1987) Chlorophylls and carotenoids, pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. (PMID: 10.1016/0076-6879(87)48036-1)
Markert B (1993) Plants as biomonitors: indicators for heavy metals in the terrestrial environment. VCH Publishers, New York 644 p. ISBN 3-52-73000-15.
Meggeson TP, Hall NW (1999) An investigation into the spatial and temporal distribution of lead, cadmium and zinc in contemporary soils and paleosols in a high arctic and an arctic alpine environment. In: Abstracts of ‘European Perspectives on Land Contamination Conference’ Soc. of the Chem. Ind., London. Land Contamination and Reclamation 7(4).
Molas J (2002) Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(II) complexes. Environ Exp Bot 47:115–126. https://doi.org/10.1016/S0098-8472(01)00116-2. (PMID: 10.1016/S0098-8472(01)00116-2)
Motuzova GV, Minkina TM, Karpova EA, Barsova NU, Mandzhieva SS (2014) Soil contamination with heavy metals as a potential and real risk to the environment. J Geochem Explor 144:241–246. (PMID: 10.1016/j.gexplo.2014.01.026)
Myśliwa-Kurdziel B, Prasad MNV, Strzalka K (2002) Heavy metal influence on the light phase of photosynthesis. Physiology and biochemistry of metal toxicity and tolerance in plants. Dordrecht Kluwer Academic Publishers (pg. 229-255).
Nazar R, Iqbal N, Masood A, Iqbal Khan RM, Syeed S, Khan N (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489. https://doi.org/10.4236/ajps.2012.310178. (PMID: 10.4236/ajps.2012.310178)
Nriagu JO (1978) The biogeochemistry of lead in the environment. Elsevier, Amsterdam, pp 18–88.
Nwosu JU, Harding AK, Linder G (1995) Cadmium and lead uptake by edible crops grown in a silt loam soil. Bull Environ Contam Toxicol 54:570–578. (PMID: 10.1007/BF00192601)
Ogaya R, Penuelas J, Asensio D, Llusia J (2011) Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environ Exp Bot 73:89–93. https://doi.org/10.1016/j.envexpbot.2011.08.004. (PMID: 10.1016/j.envexpbot.2011.08.004)
Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman JF (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:6–133. https://doi.org/10.3389/fpls.2015.00133. (PMID: 10.3389/fpls.2015.00133)
Prajapati SK, Tripathi BD (2008) Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. J Environ Qual 37:865–870. (PMID: 10.2134/jeq2006.0511)
Prasad MNV, Strzalka K (1999) Impact of heavy metals on photosynthesis. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. Springer, Heidelberg, pp 117–138. (PMID: 10.1007/978-3-662-07745-0_6)
Sagardoy R, Vázquez S, Florez-Sarasa ID, Albacete A, Ribas-Carbó M, Flexas J, Abadía J, Morales F (2010) Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytologist (2010) 187:145–158. https://doi.org/10.1111/j.1469-8137.2010.03241.x. (PMID: 10.1111/j.1469-8137.2010.03241.x)
Sengupta D, Marriboina S, Unnikrishnan DK, Reddy A (2019) Photosynthetic performance and sugar variations during key reproductive stages of soybean under potassium iodide-simulated terminal drought. Photosynthetica 57:458–469. (PMID: 10.32615/ps.2019.060)
Skórzyńska-Polit E, Baszyński T (1997) Differences in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age. Plant Sci 128(1):11–21. (PMID: 10.1016/S0168-9452(97)00126-X)
Sorrentino MC, Capozzi F, Amitrano C, Giordano S, Arena C, Spanuolo V (2018) Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: effects on morphology, cytology and photosynthesis. J Hazard Mater 351:131–137. (PMID: 10.1016/j.jhazmat.2018.02.044)
Spagnuolo V, Zampella M, Giordano S, Adamo P (2011) Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicol Environ Saf 74:1434–1443. (PMID: 10.1016/j.ecoenv.2011.02.011)
Stolarska A, Wrobel J, Wozniak A, Marska B (2007) Effect of zinc and copper soil contamination on the transpiration intensity and stomal index of winter crop wheat seedlings. J Elem 12:79–86.
Su C, Jiang LQ, Zhang WJ (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skept Crit 3:24–38.
Visconti D, Fiorentino N, Stinca A, Di Mola I, Fagnano M (2018) Use of the native vascular flora for risk assessment and management of an industrial contaminated soil. Ital J Agron 13:23–33. https://doi.org/10.4081/ija.2018.1348. (PMID: 10.4081/ija.2018.1348)
Weryszko-Chmielewska E, Chwil M (2005) Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Sci Plant Nutr 61:203–212. (PMID: 10.1111/j.1747-0765.2005.tb00024.x)
Xiong D, Douthe C, Flexas J (2017) Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant Cell Environ 41:436–450. (PMID: 10.1111/pce.13111)
Zengin FK, Munzuroglu O (2006) Toxic effects of cadmium (CdCC) on metabolism of sunflower (Helianthus annuus L.) seedlings. Acta Agricult Scand Sect B 56:224–229.
Contributed Indexing:
Keywords: Cadmium; Cardoon; Gas exchanges; Lead; Root hairs; Stomata
Substance Nomenclature:
0 (Metals, Heavy)
0 (Soil Pollutants)
00BH33GNGH (Cadmium)
Entry Date(s):
Date Created: 20210314 Date Completed: 20210727 Latest Revision: 20210805
Update Code:
20240104
PubMed Central ID:
PMC8302550
DOI:
10.1007/s11356-021-13242-9
PMID:
33715128
Czasopismo naukowe
The contamination of environments by heavy metals has become an urgent issue causing undesirable accumulations and severe damages to agricultural crops, especially cadmium and lead which are among the most widespread and dangerous metal pollutants worldwide. The selection of proper species is a crucial step in many plant-based restoration approaches; therefore, the aim of the present work was to check for early morphophysiological responsive traits in three cultivars of Cynara cardunculus (Sardo, Siciliano, and Spagnolo), helping to select the best performing cultivar for phytoremediation. For all three tested cultivars, our results indicate that cardoon displays some morphophysiological traits to face Cd and Pb pollution, particularly at the root morphology level, element uptake ability, and photosynthetic pigment content. Other traits show instead a cultivar-specific behavior; in fact, stomata plasticity, photosynthetic pattern, and antioxidant power provide different responses, but only Spagnolo cv. achieves a successful strategy attaining a real resilience to metal stress. The capacity of Spagnolo plants to modify leaf structural and physiological traits under heavy metal contamination to maintain high photosynthetic efficiency should be considered an elective trait for its use in contaminated environments.
(© 2021. The Author(s).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies