Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Potential interactions between an oral fosfomycin formulation and feed or drinking water: Impact on bioavailability in piglets.

Tytuł:
Potential interactions between an oral fosfomycin formulation and feed or drinking water: Impact on bioavailability in piglets.
Autorzy:
Decundo JM; Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.; Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.
Diéguez SN; Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.; Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA, Tandil, Argentina.
Amanto FA; Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.
Martínez G; Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.; Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.
Pérez Gaudio DS; Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.; Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.
Fernández Paggi MB; Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.; Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.; Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.
Romanelli A; Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.; Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.; Área Fisiología de la Nutrición, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.
Soraci AL; Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.; Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.
Źródło:
Journal of veterinary pharmacology and therapeutics [J Vet Pharmacol Ther] 2021 Sep; Vol. 44 (5), pp. 783-792. Date of Electronic Publication: 2021 Mar 15.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Oxford, Blackwell Scientific Publications.
MeSH Terms:
Drinking Water*
Fosfomycin*
Administration, Oral ; Animals ; Biological Availability ; Solubility ; Swine
References:
Abuhelwa, A. Y., Williams, D. B., Upton, R. N., & Foster, D. J. R. (2017). Food, gastrointestinal pH, and models of oral drug absorption. European Journal of Pharmaceutics and Biopharmaceutics, 112, 234-248. https://doi.org/10.1016/j.ejpb.2016.11.034.
Aragón, J., González, R., Fuentes, G., Palin, L., Croce, G., & Viterbo, D. (2012). In vitro release kinetics and physical, chemical and mechanical characterization of a POVIAC®/CaCO 3/HAP-200 composite. Journal of Materials Science: Materials in Medicine, 23(2), 259-270.
Balestra, F., & Petracci, M. (2019). Technofunctional ingredients for meat products: Current challenges. In Sustainable meat production and processing. Sustainable meat production and processing, 45-68. Academic Press.
Bavera, G. A. (2001). Manual de aguas y aguadas para el ganado, Second. Rio Cuarto, Córdoba, Argentina: Imberti-Bavera.
Bos, M. E. H., Taverne, F. J., Van Geijlswijk, I. M., Mouton, J. W., Mevius, D. J., Heederik, D. J. J., & Authority, M. (2013). Consumption of Antimicrobials in Pigs , Veal Calves and Broilers in The Netherlands : Quantitative Results of Nationwide Collection of Data in 2011, 8(10). https://doi.org/10.1371/journal.pone.0077525.
Bundgaard, H. (1980). Acid-catalyzed hydrolysis of fosfomycin and its implication in oral absorption of the drug. International Journal of Pharmaceutics, 6(I 980), 1-9.
Burch, D. G. (2013). Antimicrobial drug use in swine. In S. Giguère, J. F. Prescott, & P. M. Dowling (Eds.), Antimicrobial Therapy in Veterinary Medicine (pp. 553-568).
Burow, E., & Kasbohrer, A. (2016). Risk factors for antimicrobial resistance in escherichia coli in pigs receiving oral antimicrobial treatment: A systematic review. Microbial Drug Resistance, https://doi.org/10.1089/mdr.2015.0318.
Campbell, J. M., Crenshaw, J. D., & Polo, J. (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology, 4(1), 2-5. https://doi.org/10.1186/2049-1891-4-19.
Carmo, L. P., Müntener, C., Chevance, A., Moulin, G., & Magouras, I. (2017). Approaches for quantifying antimicrobial consumption per animal species based on national sales data : a Swiss example, 2006 to 2013. Eurosurveillance, 1-11.
Cirelli, A. F., Schenone, N., Carrera, A. L. P., & Volpedo, A. V. (2010). Calidad de agua para la producción de especies animales tradicionales y no tradicionales en Argentina. AUGMDomus, 1, 45-66.
Costa, F. O., Sousa, J. J. S., Pais, A. A. C. C., & Formosinho, S. J. (2003). Comparison of dissolution profiles of Ibuprofen pellets. Journal of Controlled Release, 89, 199-212. https://doi.org/10.1016/S0168-3659(03)00033-6.
Cvijic, S., Parojc, J., & Langguth, P. (2014). Viscosity-mediated negative food effect on oral absorption of poorly-permeable drugs with an absorption window in the proximal intestine : In vitro experimental simulation and computational verification. European Journal of Pharmaceutical Sciences, https://doi.org/10.1016/j.ejps.2014.04.008.
de Sousa, D. N. R., Insa, S., Mozeto, A. A., Petrovic, M., Chaves, T. F., & Fadini, P. S. (2018). Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere, https://doi.org/10.1016/j.chemosphere.2018.04.085.
Decundo, J. M., Diéguez, S. N., Martínez, G., Romanelli, A., Fernández Paggi, M. B., Perez Gaudio, D. S., Amanto, F. A., & Soraci, A. L. (2019). Impact of water hardness on oxytetracycline oral bioavailability in fed and fasted piglets. Veterinary Medicine and Sciences, 5(4), 517-525. https://doi.org/10.1002/vms3.185.
Dieguez, S., Soraci, A., Tapia, O., Pérez, D., Harkes, R., & Romano, O. (2011). Determination of antibiotic fosfomycin in chicken serum by liquid chromatography-tandem mass spectrometry. Journal of Liquid Chromatography and Related Technologies, 34, 37-41. https://doi.org/10.1080/10826076.2010.526873.
Farrier, D. S. (1997). PK solutions (ver. 2.0. 2): A noncompartmental pharmacokinetic data analysis program. Ashlanh, OH, USA: Summit Research Services.
FDA. (1997). Guidance for Industry Dissolution Testing of Immediate. Evaluation, 4, 15-22.Retrieved from http://www.fda.gov/downloads/Drugs//Guidances/ucm070246.pdf.
Ferran, A. A., Lacroix, M. Z., Bousquet-Mélou, A., Duhil, I., & Roques, B. B. (2020). Levers to improve antibiotic treatment of lambs via drinking water in sheep fattening houses: The example of the sulfadimethoxine/trimethoprim combination. Antibiotics, 9(9), 561.
Ferran, A. A., & Roques, B. B. (2019). Can oral group medication be improved to reduce antimicrobial use? Veterinary Record, 5-7.
Filippitzi, M. E., Callens, B., Pardon, B., Persoons, D., Dewulf, J., Unit, V. E., & Health, H. (2014). Antimicrobial use in pigs, broilers and veal calves in Belgium. Vlaams Diergeneeskundig Tijdschrift, 83, 215-224.
Fleisher, D., Li, C., Zhou, Y., Pao, L. H., & Karim, A. (1999). Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical pharmacokinetics, 36(3), 233-254.
Gibaldi, M., & Perrier, D. (2007). Noncompartmental analysis based on statistical moment theory. I. M. Gibaldi, & D. Perrier (Eds.), Pharmacokinetics (2nd ed., p. 413). Informa healthcare.
Goossens, J., Vandenbroucke, V., Pasmans, F., De Baere, S., Osselaere, M., Verbrugghe, E., Haesebrouck, F., De Saeger, S., Eeckhout, M., Audenaert, K., Haesaert, G., De Backer, P., & Croubels, S. (2012). Influence of mycotoxins and a mycotoxin adsorbing agent on the oral bioavailability of commonly used antibiotics in pigs. Toxins, 4(4), 281-295.
Hémonic, A., Chauvin, C., Corrégé, I., Guinaudeau, J., Soyer, J., Berthelot, N., & Verliat, F. (2013). Development of a monitoring tool for antibiotic use in pig production. Journées de la Recherche Porcine en France, 45, 255-260.
Heo, J. M., Opapeju, F. O., Pluske, J. R., Kim, J. C., Hampson, D. J., & Nyachoti, C. M. (2013). Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition, 97(2), 207-237.
Hörter, D., & Dressman, J. (2001). Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Advanced Drug Delivery Reviews, 46, 75-87.
Ishizawa, T., Hayashi, M., & Awazu, S. (1991a). Effect of carrier-mediated transport system on intestinal fosfomycin absorption in situ and in vivo. Journal of Pharmacobio-Dynamics, 14(2), 82-86.
Ishizawa, T., Hayashi, M., & Awazu, S. (1991b). Paracellular and transcellular permeabilities of fosfomycin across small intestinal membrane of rat and rabbit by voltage-clamp method. Journal of Pharmacobio-Dynamics, 14, 583-589.
Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics, 420(1), 1-10. https://doi.org/10.1016/j.ijpharm.2011.08.032.
Khadka, P., Ro, J., Kim, H., Kim, I., Tae, J., Kim, H., & Lee, J. (2014). ScienceDirect Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences, 9(6), 304-316. https://doi.org/10.1016/j.ajps.2014.05.005.
Korsmeyer, R. W., Gumy, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(15), 25-35.
Labuza, T. P. (1977). The Properties of Water in Relationship to Water Binding in Foods: A Review, 1(10), 167-190.
Little, S. B., Crabb, H. K., Woodward, A. P., & Browning, G. F. (2019). Review: Water medication of growing pigs : sources of between- animal variability in systemic exposure to antimicrobials. Animal, 1-10, https://doi.org/10.1017/S1751731119001903.
Martinez, M., Amidon, G., Clarke, L., & Warren, W. (2002). A pplying the biopharmaceutics classification system to veterinary pharmaceutical products Part II. Physiological Considerations. Advanced Drug Delivery Reviews, 54, 825-850.
Martinez, M. N., & Amidon, G. L. (2002). A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. The Journal of Clinical Pharmacology, 42(6), 620-643.
Moeser, A. J., Klok, C. V., Ryan, K. A., Wooten, J. G., Little, D., Cook, V. L., & Blikslager, A. T. (2007). Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292, 173-181. https://doi.org/10.1152/ajpgi.00197.2006.
Nielsen, P., & Gyrd-Hansen, N. (1996). Bioavailability of oxytetracycline, tetracycline and chlortetracycline after oral administration to fed and fasted pigs. Journal of Veterinary Pharmacology and Therapeutics, 19(4), 305-311. https://doi.org/10.1111/j.1365-2885.1996.tb00054.x.
Olkowski, A. A. (2009). Livestock water quality: A field guide for cattle, horses, poultry and swine. Agriculture and Agri-Food Canada.
Patience, J. F. (2011). Water quality issues in pork ­ production. Allen D. Leman Swine Conference, 157-164.
Pérez, D. S., Soraci, A. L., & Tapia, M. O. (2012). Pharmacokinetics and bioavailability of calcium fosfomycin in post weaning piglets after oral administration. International Journal for Agro Veterinary and Medical Sciences, 6(6), 424-435. https://doi.org/10.5455/ijavms.20130111041914.
Perez Gaudio, D. S., Martínez, G., Paggi, M. B., Decundo, J. M., Romanelli, A., Mozo, J., Dieguez, S. N., & Soraci, A. L. (2018). Fosfomycin Penetration into Swine Leukocytes. International Journal of Applied Research in Veterinary Medicine, 16(2).
Radwan, A., Amidon, G. L., & Langguth, P. (2012). Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations : The importance of viscosity. Biopharmaceutics & Drug Dsposition. https://doi.org/10.1002/bdd.
Radwan, A., Wagner, M., Amidon, G. L., & Langguth, P. (2014). Bio-predictive tablet disintegration: Effect of water diffusivity, fluid flow, food composition and test conditions. European Journal of Pharmaceutical Sciences, 57, 273-279. https://doi.org/10.1016/j.ejps.2013.08.038.
Radwan, A., Zaid, A. N., Jaradat, N., & Odeh, Y. (2017). Food effect : The combined effect of media pH and viscosity on the gastrointestinal absorption of cipro fl oxacin tablet. European Journal of Pharmaceutical Sciences, 101, 100-106. https://doi.org/10.1016/j.ejps.2017.01.030.
Richardson, S. J., Baianu, I. C., & Steinberg, M. P. (1987). Mobility of water in corn starch suspensions determined by nuclear magnetic resonance. Starch - Stärke, 39(3), 79-83. https://doi.org/10.1002/star.19870390304.
RStudio, T. (2015). RStudio: Integrated development for R. Boston, MA: RStudio, Inc. https://www.Rstudio.Com42.
Slavin, J. (2013). Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients, 5(4), 1417-1435. https://doi.org/10.3390/nu5041417.
Soraci, A. L., Amanto, F., Pérez, D. S., Martínez, G., Dieguez, S. N., Vega, G., & Tapia, M. O. (2010). Metodología de cateterismo yugular en lechones de destete. Analecta Veterinaria, 30(1), 12-15.
Soraci, A. L., Amanto, F., Tapia, M. O., De la Torre, E., & Toutain, P. L. (2014). Exposure variability of fosfomycin administered to pigs in food or water : Impact of social rank. Research in Veterinary Science, 96(1), 153-159. https://doi.org/10.1016/j.rvsc.2013.12.003.
Soraci, A. L., Perez, D. S., Martinez, G., Amanto, F., Tapia, M. O., Dieguez, S., & Fernández, M. B. (2011). Fosfomycin concentrations in epithelial lining fluid in weaning piglets. Journal of Veterinary Pharmacology and Therapeutics, 406-409. https://doi.org/10.1111/j.1365-2885.2011.01344.x.SHORT.
Toutain, P. L., & Bousquet-Mélou, A. (2004). Bioavailability and its assessment. Journal of Veterinary Pharmacology and Therapeutics, 27(6), 455-466. https://doi.org/10.1111/j.1365-2885.2004.00604.x.
USP (2019). The United States Pharmacopeia USP 42, The National Formulary NF 37. Rockville, Maryland: United States Pharmacopeial Convention, Inc.
U.S. Department of Health and Human, Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine, (CVM). (2018). Guidance for Industry, Bioanalytical Method Validation.
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654.
Vandael, F., Filippitzi, M., Dewulf, J., Daeseleire, E., & Eeckhout, M. (2019). Oral group medication in pig production : characterising medicated feed and drinking water systems. Veterinary Record, 1-9.
Yamaoka, K. (1978). Application of Akaike´s Information Criterion (AIC) in the Evaluation of Linear Pharmacokinetic Equations. Journal of Pharmacokinetics and Biopharmaceutics, 6(2), 165-175.
Zayas, J. F. (1997). Water holding capacity of proteins. In Functionality of proteins in food (pp. 76-133). Springer.
Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., & Xie, S. (2010). DDSolver : An add-in program for modeling and comparison of drug dissolution profiles. Journal of the American Association of Pharmaceutical Scientists, 12(3), https://doi.org/10.1208/s12248-010-9185-1.
Ziółkowski, H., Jasiecka, A., Zuśka-Prot, M., Przybysz, J., Grabowski, T., & Jaroszewski, J. J. (2016). Metal ion-oxytetracycline pharmacokinetic interactions after oral co-administration in broiler chickens. Poultry Science, 95(8), 1927-1933. https://doi.org/10.3382/ps/pew121.
Contributed Indexing:
Keywords: bioavailability; drinking water; feed; oral antibiotics; piglets
Substance Nomenclature:
0 (Drinking Water)
2N81MY12TE (Fosfomycin)
Entry Date(s):
Date Created: 20210315 Date Completed: 20211124 Latest Revision: 20211124
Update Code:
20240104
DOI:
10.1111/jvp.12966
PMID:
33720436
Czasopismo naukowe
Feed and drinking water are the most frequently used vehicles for administration of antibiotics in intensive pig production. Interactions of drugs with feed and water components may affect dissolution and bioavailability. Therefore, antibiotic formulations should be tested in order to assure their suitability for oral use. In this study, an oral fosfomycin (FOS) formulation was evaluated considering dissolution in water (soft and hard), release kinetics from feed in simulated gastrointestinal fluids and bioavailability after oral administration blended into feed or dissolved in water (soft and hard), to fed and fasted piglets. FOS reached immediate dissolution in soft and hard water. The presence of feed significantly decreased antibiotic dissolution in simulated intestinal medium. Bioavailability was lower when feed was used as a vehicle for FOS administration than when the drug was dissolved in water (soft or hard). The fed or fasted condition of piglets did not affect bioavailability. Probably, FOS interactions with feed components alter its dissolution in the gastrointestinal tract, and only a fraction of the dose would be available for absorption. This information must be considered to support decisions on eligibility of antibiotic pharmaceutical formulations and the vehicle for their administration in order to pursue a responsible use of antibiotics.
(© 2021 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies