Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Role of CMR feature-tracking derived left ventricular strain in predicting myocardial iron overload and assessing myocardial contractile dysfunction in patients with thalassemia major.

Tytuł:
Role of CMR feature-tracking derived left ventricular strain in predicting myocardial iron overload and assessing myocardial contractile dysfunction in patients with thalassemia major.
Autorzy:
Ojha V; Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, 110029, India.
Ganga KP; Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, 110029, India.
Seth T; Department of Haematology, All India Institute of Medical Sciences, New Delhi, 110029, India.
Roy A; Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
Naik N; Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
Jagia P; Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, 110029, India.
Gulati GS; Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, 110029, India.
Kumar S; Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, 110029, India. .
Sharma S; Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, 110029, India.
Źródło:
European radiology [Eur Radiol] 2021 Aug; Vol. 31 (8), pp. 6184-6192. Date of Electronic Publication: 2021 Mar 15.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer International, c1991-
MeSH Terms:
Cardiomyopathies*/diagnostic imaging
Iron Overload*/complications
Iron Overload*/diagnostic imaging
Ventricular Dysfunction, Left*/diagnostic imaging
beta-Thalassemia*/complications
beta-Thalassemia*/diagnostic imaging
Adolescent ; Humans ; Magnetic Resonance Imaging, Cine ; Magnetic Resonance Spectroscopy ; Male ; Myocardium ; Ventricular Function, Left
References:
Colah R, Italia K, Gorakshakar A (2017) Burden of thalassemia in India: the road map for control. Pediatr Hematol Oncol J 2:79–84.
Borgna-Pignatti C, Rugolotto S, De Stefano P et al (2004) Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica 89:1187–1193. (PMID: 15477202)
Porter JB (2001) Practical management of iron overload. Br J Haematol 115:239–252. (PMID: 11703317)
Murphy CJ, Oudit GY (2010) Iron-overload cardiomyopathy: pathophysiology, diagnosis, and treatment. J Card Fail 16:888–900. (PMID: 21055653)
Pennell DJ, Udelson JE, Arai AE et al (2013) Cardiovascular function and treatment in β-thalassemia major: a consensus statement from the American Heart Association. Circulation 128:281–308. (PMID: 23775258)
Kremastinos DT, Dimitrios F (2011) Iron overload cardiomyopathy in clinical practice. Circulation 124:2253–2263. (PMID: 22083147)
Pepe A, Lombardi M, Positano V et al (2006) Evaluation of the efficacy of oral deferiprone in beta-thalassemia major by multislice multiecho T2*. Eur J Haematol 76:183–192. (PMID: 16451393)
Aessopos A, Fragodimitri C, Karabatsos F et al (2007) Cardiac magnetic resonance imaging R2* assessments and analysis of historical parameters in patients with transfusion-dependent thalassemia. Haematologica 92:131–132. (PMID: 17229649)
Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179. (PMID: 11913479)
Kirk P, Roughton M, Porter JB et al (2009) Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation 120:1961–1968. (PMID: 198015052784198)
Carpenter J-P, He T, Kirk P et al (2011) On T2* Magnetic resonance and cardiac iron. Circulation 123:1519–1528. (PMID: 214448813435874)
Westwood MA, Sheppard MN, Awogbade M et al (2005) Myocardial biopsy and T2* magnetic resonance in heart failure due to thalassaemia. Br J Haematol 128:2–2. (PMID: 15606544)
Ghugre NR, Enriquez CM, Gonzalez I et al (2006) MRI detects myocardial iron in the human heart. Magn Reson Med 56:681–686. (PMID: 168887972887674)
Meloni A, Maggio A, Positano V et al (2020) CMR for myocardial iron overload quantification: calibration curve from the MIOT Network. Eur Radiol 30:3217–3225. (PMID: 32052169)
Menacho K, Abdel-Gadir A, Moon JC, Fernandes JL (2019) T2* mapping techniques: iron overload assessment and other potential clinical applications. Magn Reson Imaging Clin N Am 27:439–451. (PMID: 31279448)
Ramazzotti A, Pepe A, Positano V et al (2009) Multicenter validation of the magnetic resonance t2* technique for segmental and global quantification of myocardial iron. J Magn Reson Imaging 30:62–68. (PMID: 19557847)
Westwood MA, Anderson LJ, Firmin DN et al (2003) Interscanner reproducibility of cardiovascular magnetic resonance T2* measurements of tissue iron in thalassemia. J Magn Reson Imaging JMRI 18:616–620. (PMID: 14579406)
Westwood MA, Firmin DN, Gildo M et al (2005) Intercentre reproducibility of magnetic resonance T2* measurements of myocardial iron in thalassaemia. Int J Cardiovasc Imaging 21:531–538. (PMID: 16175443)
Claus P, Omar AMS, Pedrizzetti G et al (2015) Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging 8:1444–1460. (PMID: 26699113)
Nathaniel R (2017) Myocardial strain. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.117.007145.
Parsaee M, Akiash N, Azarkeivan A et al (2018) The correlation between cardiac magnetic resonance T2* and left ventricular global longitudinal strain in people with β-thalassemia. Echocardiography 35:438–444. (PMID: 29399871)
Garceau P, Nguyen ET, Carasso S et al (2011) Quantification of myocardial iron deposition by two-dimensional speckle tracking in patients with β-thalassaemia major and Blackfan–Diamond anaemia. Heart 97:388–393. (PMID: 21296782)
Abtahi F, Abdi A, Jamshidi S et al (2019) Global longitudinal strain as an Indicator of cardiac Iron overload in thalassemia patients. Cardiovasc Ultrasound 17:24. (PMID: 316849636829819)
Pizzino F, Meloni A, Terrizzi A et al (2018) Detection of myocardial iron overload by two-dimensional speckle tracking in patients with beta-thalassaemia major: a combined echocardiographic and T2* segmental CMR study. Int J Cardiovasc Imaging 34:263–271. (PMID: 28770456)
Poorzand H, Manzari TS, Vakilian F et al (2017) Longitudinal strain in beta thalassemia major and its relation to the extent of myocardial iron overload in cardiovascular magnetic resonance. Arch Cardiovasc Imaging 5:1.
Ari ME, Ekici F, Çetin İİ et al (2017) Assessment of left ventricular functions and myocardial iron load with tissue Doppler and speckle tracking echocardiography and T2* MRI in patients with β-thalassemia major. Echocardiography 34:383–389. (PMID: 28139073)
Schuster A, Hor KN, Kowallick JT et al (2016) Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.115.004077.
Aurich M, Keller M, Greiner S et al (2016) Left ventricular mechanics assessed by two-dimensional echocardiography and cardiac magnetic resonance imaging: comparison of high-resolution speckle tracking and feature tracking. Eur Heart J Cardiovasc Imaging 17:1370–1378. (PMID: 27013249)
Onishi T, Saha SK, Ludwig DR et al (2013) Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 15:95. (PMID: 241341584016574)
Onishi T, Saha SK, Delgado-Montero A et al (2015) Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction. J Am Soc Echocardiogr 28:587–596. (PMID: 25577185)
Cogliandro T, Derchi G, Mancuso L et al (2008) Guideline recommendations for heart complications in thalassemia major. J Cardiovasc Med 9:515–525.
Messroghli DR, Radjenovic A, Kozerke S et al (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146. (PMID: 15236377)
Feng Y, He T, Carpenter J-P et al (2013) In vivo comparison of myocardial T1 with T2 and T2* in thalassaemia major. J Magn Reson Imaging JMRI 38:588–593. (PMID: 23371802)
Messroghli DR, Moon JC, Ferreira VM et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19:75. (PMID: 289928175633041)
Chu WCW, Au WY, Lam WWM (2012) MRI of cardiac iron overload. J Magn Reson Imaging 36:1052–1059. (PMID: 23090916)
Rezaeian N, Mohtasham MA, Khaleel AJ et al (2020) Comparison of global strain values of myocardium in beta-thalassemia major patients with iron load using specific feature tracking in cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 36:1343–1349. (PMID: 32346846)
Di Odoardo LAF, Giuditta M, Cassinerio E et al (2017) Myocardial deformation in iron overload cardiomyopathy: speckle tracking imaging in a beta-thalassemia major population. Intern Emerg Med 12:799–809. (PMID: 28456904)
Kremastinos DT, Dimitrios F, Athanasios A et al (2010) β-Thalassemia cardiomyopathy. Circ Heart Fail 3:451–458. (PMID: 20484195)
Walker M, Wood J, Taher A (2014) Cardiac complications in thalassaemia major. Thalassaemia International Federation.
Kremastinos Dimitrios T, George T, Theodorakis George N et al (1995) Myocarditis in β-Thalassemia Major. Circulation 91:66–71.
Economou-Petersen E, Aessopos A, Kladi A et al (1998) Apolipoprotein E epsilon4 allele as a genetic risk factor for left ventricular failure in homozygous beta-thalassemia. Blood 92:3455–3459. (PMID: 9787187)
Cusmà Piccione M, Piraino B, Zito C et al (2013) Early identification of cardiovascular involvement in patients with β-thalassemia major. Am J Cardiol 112:1246–1251. (PMID: 23871677)
Pepe A, Meloni A, Pistoia L et al (2018) MRI multicentre prospective survey in thalassaemia major patients treated with deferasirox versus deferiprone and desferrioxamine. Br J Haematol 183:783–795. (PMID: 30334574)
Pepe A, Meloni A, Borsellino Z et al (2015) Myocardial fibrosis by late gadolinium enhancement cardiac magnetic resonance and hepatitis C virus infection in thalassemia major patients. J Cardiovasc Med Hagerstown Md 16:689–695.
Casale M, Meloni A, Filosa A et al (2015) Multiparametric cardiac magnetic resonance survey in children with thalassemia major. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.115.003230.
Pepe A, Meloni A, Filosa A et al (2020) Prospective CMR survey in children with thalassemia major: insights from a national network. JACC Cardiovasc Imaging 13:1284–1286. (PMID: 32061556)
Olson LJ, Edwards WD, McCall JT et al (1987) Cardiac iron deposition in idiopathic hemochromatosis: histologic and analytic assessment of 14 hearts from autopsy. J Am Coll Cardiol 10:1239–1243. (PMID: 3680791)
Wang ZJ, Fischer R, Chu Z et al (2010) Assessment of cardiac iron by MRI susceptometry and R2* in patients with thalassemia. Magn Reson Imaging 28:363–371. (PMID: 200611102839041)
Torlasco C, Cassinerio E, Roghi A et al (2018) Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment. PLoS One. https://doi.org/10.1371/journal.pone.0192890.
Krittayaphong R, Zhang S, Saiviroonporn P et al (2017) Detection of cardiac iron overload with native magnetic resonance T1 and T2 mapping in patients with thalassemia. Int J Cardiol 248:421–426. (PMID: 28688717)
Krittayaphong R, Zhang S, Saiviroonporn P et al (2019) Assessment of cardiac iron overload in thalassemia with MRI on 3.0-T: high-field T1, T2, and T2* quantitative parametric mapping in comparison to T2* on 1.5-T. JACC Cardiovasc Imaging 12:752–754. (PMID: 30448128)
Amzulescu MS, De Craene M, Langet H et al (2019) Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging 20:605–619. (PMID: 309031396529912)
Schulz-Menger J, Bluemke DA, Bremerich J et al (2020) Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update. J Cardiovasc Magn Reson 22:19. (PMID: 321609257066763)
Contributed Indexing:
Keywords: Cardiomyopathy; Iron overload; Magnetic resonance imaging; Ventricular dysfunction, left; beta-Thalassemia
Entry Date(s):
Date Created: 20210315 Date Completed: 20210713 Latest Revision: 20210713
Update Code:
20240104
DOI:
10.1007/s00330-020-07599-7
PMID:
33721061
Czasopismo naukowe
Objective: Myocardial iron overload (MIO) in thalassemia major (TM) may cause subclinical left ventricular (LV) dysfunction which manifests with abnormal strain parameters before a decrease in ejection fraction (EF). Early detection of MIO using cardiovascular magnetic resonance (CMR)-T2* is vital. Our aim was to assess if CMR feature-tracking (FT) strain correlates with T2*, and whether it can identify early contractile dysfunction in patients with MIO but normal EF.
Methods: One hundred and four consecutive TM patients with LVEF > 55% on echocardiography were prospectively enrolled. Those fulfilling the inclusion criteria underwent CMR, with T2* being the gold standard for detecting MIO. Group 1 included patients without significant MIO (T2* > 20 ms) and group 2 with significant MIO (T2* < 20 ms).
Results: Eighty-six patients (mean age, 17.32 years, 59 males) underwent CMR. There were 68 (79.1%) patients in group 1 and 18 (20.9%) in group 2. Fourteen patients (16.3%) had mild-moderate MIO, and four (4.6%) had severe MIO. Patients in group 2 had significantly lower global radial strain (GRS). Global longitudinal strain (GLS) and global circumferential strain (GCS) did not correlate with T2*. T1 mapping values were significantly lower in patients with T2* < 10 ms than those with T2* of 10-20 ms; however, FT-strain values were not significantly different between these two groups.
Conclusion: CMR-derived GRS, but not GLS and GCS, correlated with CMR T2*. GRS is significantly decreased in TM patients with MIO and normal EF when compared with those without. FT-strain may be a useful adjunct to CMR T2* and maybe an early marker of myocardial dysfunction in TM.
Key Points: • A global radial strain of < 29.3 derived from cardiac MRI could predict significant myocardial iron overload in patients with thalassemia, with a sensitivity of 76.5% and specificity of 66.7%. • Patients with any myocardial iron overload have significantly lower GRS, compared to those without, suggesting the ability of CMR strain to identify subtle myocardial contractile disturbances. • T1 and T2 mapping values are significantly lower in those with severe myocardial iron than those with mild-moderate iron, suggesting a potential role of T1 and T2 mapping in grading myocardial iron.
(© 2020. European Society of Radiology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies