Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Greenhouse gas emissions (CO 2 and CH 4 ) and inorganic carbon behavior in an urban highly polluted tropical coastal lagoon (SE, Brazil).

Tytuł:
Greenhouse gas emissions (CO 2 and CH 4 ) and inorganic carbon behavior in an urban highly polluted tropical coastal lagoon (SE, Brazil).
Autorzy:
Cotovicz LC Jr; Programa de Geoquímica, Universidade Federal Fluminense, Niterói, RJ, Brazil. .; Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, CE, Brazil. .
Ribeiro RP; Centro Experimental de Monitoramento e Mitigação Ambiental (CEMMA), Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Nilópolis, RJ, Brasil.
Régis CR; Programa de Geoquímica, Universidade Federal Fluminense, Niterói, RJ, Brazil.
Bernardes M; Programa de Geoquímica, Universidade Federal Fluminense, Niterói, RJ, Brazil.
Sobrinho R; Programa de Geoquímica, Universidade Federal Fluminense, Niterói, RJ, Brazil.
Vidal LO; Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil.
Tremmel D; Programa de Geoquímica, Universidade Federal Fluminense, Niterói, RJ, Brazil.
Knoppers BA; Programa de Geoquímica, Universidade Federal Fluminense, Niterói, RJ, Brazil.
Abril G; Programa de Geoquímica, Universidade Federal Fluminense, Niterói, RJ, Brazil.; Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 7208, Muséum National d'Histoire Naturelle, CNRS, IRD, SU, UCN, UA, Paris, France.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2021 Jul; Vol. 28 (28), pp. 38173-38192. Date of Electronic Publication: 2021 Mar 16.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Greenhouse Gases*/analysis
Brazil ; Carbon Dioxide/analysis ; Ecosystem ; Environmental Monitoring ; Methane/analysis ; Nitrous Oxide/analysis
References:
Abril G, Frankignoulle M (2001) Nitrogen – alkalinity interactions in the highly polluted Scheldt Basin (Belgium). Water Res 35:844–850. https://doi.org/10.1016/S0043-1354(00)00310-9. (PMID: 10.1016/S0043-1354(00)00310-9)
Abril G, Iversen N (2002) Methane dynamics in a shallow, non-tidal, estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181. https://doi.org/10.3354/meps230171. (PMID: 10.3354/meps230171)
Abril G, Etcheber H, Delille B, Frankignoulle M, Borges AV (2003) Carbonate dissolution in the turbid and eutrophic Loire estuary. Mar Ecol Prog Ser 259:129–138. https://doi.org/10.3354/meps259129. (PMID: 10.3354/meps259129)
Abril G, Commarieu MV, Guerin F (2007) Enhanced methane oxidation in an estuarine turbidity maximum. Limnol Oceanogr 52:470–475. https://doi.org/10.4319/lo.2007.52.1.0470. (PMID: 10.4319/lo.2007.52.1.0470)
Amarante, OA, Silva FJ, Rios Filho L G (2002) Wind power atlas of the Rio de Janeiro State. Secretaria de Estado da Energia da Indústria Naval e do Petróleo, Rio de Janeiro. (in Portuguese) http://www.cresesb.cepel.br/publicacoes/download/atlas_eolico/AtlasEolicoRJ.pdf . Accessed 27 April 2018.
ANA 2019. Water National Agency. National atlas of sewage: de-pollution of river basins. (in Portuguese) http://www.snirh.gov.br/portal/snirh/snirh-1/atlas-esgotos . Accessed 25 January 2020.
Baldry K, Saderne V, McCorkle D, Churchill JH, Agusti S, Duarte C (2019) Anomalies in the carbonate system of Red Sea coastal habitats. Biogeosciences 17:423–439. https://doi.org/10.5194/bg-17-423-2020. (PMID: 10.5194/bg-17-423-2020)
Bange HW (2006) Nitrous oxide and methane in European coastal waters. Estuar Coast Shelf Sci 70:361–374. https://doi.org/10.1016/j.ecss.2006.05.042. (PMID: 10.1016/j.ecss.2006.05.042)
Beaulieu J, DelSontro T, Downing J (2019) Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat Commun 10:1–5. https://doi.org/10.1038/s41467-019-09100-5. (PMID: 10.1038/s41467-019-09100-5)
Benson BB, Krause D (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–632. https://doi.org/10.4319/lo.1984.29.3.0620. (PMID: 10.4319/lo.1984.29.3.0620)
Borges AV, Abril G (2011) Carbon dioxide and methane dynamics in estuaries. In: McLusky D, Wolanski E (eds) Treatise on Estuarine and Coastal Science. Academic Press, Amsterdam, pp 119–161. https://doi.org/10.1016/B978-0-12-374711-2.00504-0. (PMID: 10.1016/B978-0-12-374711-2.00504-0)
Borges AV, Gypens N (2010) Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnol Oceanogr 55:346–353. https://doi.org/10.4319/lo.2010.55.1.0346. (PMID: 10.4319/lo.2010.55.1.0346)
Borges AV, Champenois W, Gypens N, Delille B, Harlay J (2016) Massive marine methane emissions from near-shore shallow coastal areas. Sci Rep 6:27908. https://doi.org/10.1038/srep27908. (PMID: 10.1038/srep27908)
Borges AV, Darchambeau F, Lambert T, Morana C, Allen GH, Tambwe E, Toengaho Sembaito A, Mambo T, Nlandu Wabakhangazi J, Descy J-P, Teodoru CR, Bouillon S (2019) Variations in dissolved greenhouse gases (CO 2 , CH 4 , N 2 O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity. Biogeosciences 16:3801–3834. https://doi.org/10.5194/bg-16-3801-2019. (PMID: 10.5194/bg-16-3801-2019)
Bosse U, Frenzel P, Conrad R (1993) Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiol Ecol 13:123–134. https://doi.org/10.1111/j.1574-6941.1993.tb00058.x. (PMID: 10.1111/j.1574-6941.1993.tb00058.x)
Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation's estuaries: a decade of change. Harmful Algae 8(623):21–32. https://doi.org/10.1016/j.hal.2008.08.028. (PMID: 10.1016/j.hal.2008.08.028)
Brigham BA, Bird JA, Juhl AR, Zappa CJ, Montero AD, O’Mullan GD (2019) Anthropogenic inputs from a coastal megacity are linked to greenhouse gas concentrations in the surrounding estuary. Limnol Oceanogr 64:2497–2511. https://doi.org/10.1002/lno.11200. (PMID: 10.1002/lno.11200)
Burgos M, Sierra A, Ortega T, Forja JM (2015) Anthropogenic effects on greenhouse gas (CH4 and N2O) emissions in the Guadalete River Estuary (SW Spain). Sci Total Environ 503–504:179–189. https://doi.org/10.1016/j.scitotenv.2014.06.038. (PMID: 10.1016/j.scitotenv.2014.06.038)
Cai W-J, Pomeroy LR, Moran MA, Wang Y (1999) Oxygen and carbon dioxide mass balance for the estuarine–intertidal marsh complex of five rivers in the southeastern U.S. Limnol Oceanogr 44:639–649. https://doi.org/10.4319/lo.1999.44.3.0639. (PMID: 10.4319/lo.1999.44.3.0639)
Cai W-J, Hu X, Huang W, Murrell MC, Lehrter JC, Lohrenz SE, Chou W, Zhai W, Hollibaugh JT, Wang Y, Zhao P, Guo X, Gundersen K, Dai M, Gong G (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4:766–770. https://doi.org/10.1038/NGEO1297. (PMID: 10.1038/NGEO1297)
Cai W-J, Huang W-J, Luther GW, Pierrot D, Li M, Testa J, Xue M, Joesoef A, Mann R, Brodeur J, Xu Y-Y, Chen B, Hussain N, Waldbusser GG, Cornwell J, Kemp WM (2017) Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nat Commun 8:369. https://doi.org/10.1038/s41467-017-00417-7. (PMID: 10.1038/s41467-017-00417-7)
Campeau A, Lapierre J-F, Vachon D, del Giogio PA (2014) Regional contribution of CO 2 and CH 4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Global Biogeochem Cy 28:57–69. https://doi.org/10.1002/2013GB004685. (PMID: 10.1002/2013GB004685)
Chanton JP, Martens CS, Kelley CA (1989) Gas transport from methane saturated, tidal freshwater and wetland sediments. Limnol Oceanogr 34:807–819. https://doi.org/10.4319/lo.1989.34.5.0807. (PMID: 10.4319/lo.1989.34.5.0807)
Chen CT, Huang TH, Chen YC, Bai Y, He X, Kang Y (2013) Air–sea exchanges of CO 2 in the world’s coastal seas. Biogeosciences 10:6509–6544. https://doi.org/10.5194/bg-10-6509-2013. (PMID: 10.5194/bg-10-6509-2013)
Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253.
Cotovicz LC, Knoppers BA, Brandini N, Costa Santos SJ, Abril G (2015) A strong CO 2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences 12:6125–6146. https://doi.org/10.5194/bg-12-6125-2015. (PMID: 10.5194/bg-12-6125-2015)
Cotovicz LC, Knoppers BA, Brandini N, Poirier D, Costa Santos SJ, Abril G (2016) Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil). Limnol Oceanogr 61:S238–S252. https://doi.org/10.1002/lno.10298. (PMID: 10.1002/lno.10298)
Cotovicz LC, Knoppers BA, Brandini N, Poirier D, Costa Santos SJ, Abril G (2018) Aragonite saturation state in a tropical coastal embayment dominated by phytoplankton blooms (Guanabara Bay - Brazil). Mar Pollut Bull 129:729–739. https://doi.org/10.1016/j.marpolbul.2017.10.064. (PMID: 10.1016/j.marpolbul.2017.10.064)
Cotovicz LC, Vidal LO, de Rezende CE, Bernardes MC, Knoppers BA, Sobrinho RL, Cardoso RP, Muniz M, dos Anjos RM, Biehler A, Abril G (2020) Carbon dioxide sources and sinks in the delta of the Paraíba do Sul River (Southeastern Brazil) modulated by carbonate thermodynamics, gas exchange and ecosystem metabolism during estuarine mixing. Mar Chem 226:103869. https://doi.org/10.1016/j.marchem.2020.103869. (PMID: 10.1016/j.marchem.2020.103869)
De-Magalhães L, Noyma N, Furtado LL, Mucci M, van Oosterhout F, Huszar VLM, Marinho MM, Lürling M (2017) Efficacy of coagulants and ballast compounds in removal of cyanobacteria (Microcystis) from water of the tropical lagoon Jacarepaguá (Rio de Janeiro, Brazil). Estuar Coasts 40:121–133. https://doi.org/10.1007/s12237-016-0125-x. (PMID: 10.1007/s12237-016-0125-x)
Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2H 2 (g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO 4 in synthetic sea water from 273.15 to 318.15 K. J. Chem Thermodyn 22:113–127. https://doi.org/10.1016/0021-9614(90)90074-Z. (PMID: 10.1016/0021-9614(90)90074-Z)
Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743. https://doi.org/10.1016/0198-0149(87)90021-5. (PMID: 10.1016/0198-0149(87)90021-5)
Etheridge DM, Steele LP, Francey RJ, Langenfelds RL (1998) Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J Geophys Res 103:15979–15993. https://doi.org/10.1029/98JD00923. (PMID: 10.1029/98JD00923)
Fenchel T, Bernard C, Esteban G, Finlay BJ, Hansen PJ, Iversen N (1995) Microbial diversity and activity in a Danish Fjord with anoxic deep water. Ophelia 43(1):45–100.
Foley J, Yuan Z, Lant P (2009) Dissolved methane in rising main sewer systems: field measurements and simple model development for estimating greenhouse gas emissions. Water Sci Technol 60:2963–2971. https://doi.org/10.2166/wst.2009.718. (PMID: 10.2166/wst.2009.718)
Frankignoulle M, Bourge I, Wollast R (1996) Atmospheric CO 2 fluxes in a highly polluted estuary (The Scheldt). Limnol Oceanogr 41:365–369. https://doi.org/10.4319/lo.1996.41.2.0365. (PMID: 10.4319/lo.1996.41.2.0365)
Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Theate JM (1998) Carbon dioxide emission from European estuaries. Science 282:434–436. https://doi.org/10.1126/science.282.5388.434. (PMID: 10.1126/science.282.5388.434)
Gomes AM, Sampaio P, Ferrão-Filho A, Magalhães VF, Marinho MM, Oliveira AC, Santos V, Domingos P, Azevedo SM (2009) Toxic cyanobacterial blooms in an eutrophicated coastal lagoon in Rio de Janeiro, Brazil: Effects on human health. Oecol Bras 13:329–345. (PMID: 10.4257/oeco.2009.1302.08)
Gran G (1952) Determination of the equivalence point in potentiometric titrations-part II. Analyst 77:661–671. (PMID: 10.1039/an9527700661)
Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH, Weinhein. (PMID: 10.1002/9783527613984)
Guérin F, Abril G, Serça D, Delon C, Richard S, Delmas R, Tremblay A, Varfalvy L (2007) Gas transfer velocities of CO 2 and CH 4 in a tropical reservoir and its river downstream. J Mar Syst 66:161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019. (PMID: 10.1016/j.jmarsys.2006.03.019)
Guisasola A, de Hass D, Keller J, Yuan Z (2008) Methane formation in sewer systems. Water Res 42:1421–1430. https://doi.org/10.1016/j.watres.2007.10.014. (PMID: 10.1016/j.watres.2007.10.014)
Guo X, Dai M, Zhai W, Cai W-J, Chen B (2009) CO 2 flux and seasonal variability in a large subtropical estuarine system, the Pearl River Estuary, China. J Geophys Res 114:G03013. https://doi.org/10.1029/2008JG000905. (PMID: 10.1029/2008JG000905)
Gupta GVM, Thottathil SD, Balachandran KK, Madhu NV, Madeswaran P, Nair S (2009) CO 2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): influence of anthropogenic effect. Ecosystems 12:1145–1157. https://doi.org/10.1007/s10021-009-9280-2. (PMID: 10.1007/s10021-009-9280-2)
Gustafsson E, Hagens M, Sun X, Reed DC, Humborg C, Slomp CP, Gustafsson BG (2019) Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea. Biogeosciences 16:437–456. https://doi.org/10.5194/bg-16-437-2019. (PMID: 10.5194/bg-16-437-2019)
Hammer MJ, Hammer MJ (2012) Water and wastewater technology. Prentice Hall, Pearson Education Inc, NJ, USA.
Hu X, Cai W-J (2011) An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. Global Biogeochem Cy 25:GB3003. https://doi.org/10.1029/2010GB003859. (PMID: 10.1029/2010GB003859)
IPCC (2013) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF et al. (eds.) Cambridge Univ. Press. https://doi.org/10.1017/CBO9781107415324.
Jähne B, Munnich KO, Bosinger R, Dutzi A, Huber W, Libner P (1987) On parameters influencing air-water exchange. J Geophys Res 92:1937–1949. https://doi.org/10.1029/JC092iC02p01937. (PMID: 10.1029/JC092iC02p01937)
Jiang L-Q, Cai W-J, Wang Y (2008) A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnol Oceanogr 53:2603–2615. https://doi.org/10.4319/lo.2008.53.6.2603. (PMID: 10.4319/lo.2008.53.6.2603)
Kelley CA, Martens CS, Chanton JP (1990) Variations in sedimentary carbon remineralization rates in the White Oak River estuary, North Carolina. Limnol Oceanogr 35:372–383. https://doi.org/10.4319/lo.1990.35.2.0372. (PMID: 10.4319/lo.1990.35.2.0372)
Kempe S (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaffer 7:426–427. https://doi.org/10.1007/BF01135940. (PMID: 10.1007/BF01135940)
Kjerfve B (1985) In: Wolfe DA (ed) Comparative oceanography of coastal lagoons. Academic, New York, pp 63–81.
Knoppers BA, Carmouze JP, Moreira-Turcqo PF (1999) Nutrient dynamics, metabolism and eutrophication of lagoons along the east Fluminense coast, state of Rio de Janeiro, Brazil. In: Knoppers BA, Bidone ED, Abrão JJ (eds) Environmental geochemistry of coastal lagoon systems of Rio de Janeiro, Brazil. Programa de Geoquímica Ambiental, FINEP, UFF, Rio de Janeiro, pp 123–154.
Koné YJM, Abril G, Kouadio KN, Delille B, Borges AV (2009) Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa). Estuar Coasts 32:246–260. https://doi.org/10.1007/s12237-008-9121-0. (PMID: 10.1007/s12237-008-9121-0)
Koné YJM, Abril G, Delille B, Borges AV (2010) Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100:21–37. https://doi.org/10.1007/s10533-009-9402-0. (PMID: 10.1007/s10533-009-9402-0)
Kubo A, Maeda Y, Kanda J (2017) A significant net sink for CO 2 in Tokyo Bay. Sci Rep 7:44355. https://doi.org/10.1038/srep44355. (PMID: 10.1038/srep44355)
Lee K, Kim TW, Byrne RH, Millero FJ, Feely RA, Liu YM (2010) The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim Cosmochim Acta 74:1801–1811. https://doi.org/10.1016/j.gca.2009.12.027. (PMID: 10.1016/j.gca.2009.12.027)
Lorenzen C (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346. https://doi.org/10.4319/lo.1967.12.2.0343. (PMID: 10.4319/lo.1967.12.2.0343)
Martens CS, Klump JV (1980) Biogeochemical cycling in an organic-rich coastal marine basin—I. Methane sediment– water exchange processes. Geochim Cosmochim Acta 44:471–490. https://doi.org/10.1016/0016-7037(80)90045-9. (PMID: 10.1016/0016-7037(80)90045-9)
Martens CS, Albert DB, Alperin MJ (1998) Biogeochemical processes controlling methane in gassy coastal sediments—part 1. A model coupling organic matter flux to gas production, oxidation and transport. Cont Shelf Res 18:1741–1770. https://doi.org/10.1016/S0278-4343(98)00056-9. (PMID: 10.1016/S0278-4343(98)00056-9)
Matson PA, Harriss RC (2009) Biogenic trace gases: measuring emissions from soil and water. Blackwell Science, Oxford.
McMahon PB, Dennehy KF (1999) N 2 O emissions from a nitrogen enriched river. Environ Sci Technol 33:21–25. https://doi.org/10.1021/es980645n. (PMID: 10.1021/es980645n)
Mehrbach C, Cuberson CH, Hawley JE, Pytkowicz RM (1973) Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. https://doi.org/10.4319/lo.1973.18.6.0897. (PMID: 10.4319/lo.1973.18.6.0897)
Meybeck M, Ragu A (2012) GEMS-GLORI world river discharge database. Laboratoire de Géologie Appliquée, Université Pierre et Marie Curie, Paris, France, PANGAEA. https://doi.org/10.1594/PANGAEA.804574.
Middelburg JJ, Nieuwenhuize J, Iversen N, Hoegh N, de Wilde H, Helder W, Seifert R, Christof O (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59:95–119. https://doi.org/10.1023/A:1015515130419. (PMID: 10.1023/A:1015515130419)
Nirmal-Rajkumar A, Barnes J, Ramesh R, Purvaja R, Upstill-Goddard RC (2008) Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Mar Pollut Bull 56:2043–2051. https://doi.org/10.1016/j.marpolbul.2008.08.005. (PMID: 10.1016/j.marpolbul.2008.08.005)
Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219. https://doi.org/10.1080/00785236.1995.10422044. (PMID: 10.1080/00785236.1995.10422044)
NOAA (2019) National Oceanic and Atmospheric Administration. Earth System Research Laboratory. Global Monitoring Division. https://www.esrl.noaa.gov/gmd/ccgg/trends/monthly.html Accessed 20 June 2020.
Rassmann J, Eitel EM, Lansard B, Cathalot C, Brandily C, Taillefert M, Rabouille C (2020) Benthic alkalinity and dissolved inorganic carbon fluxes in the Rhône River prodelta generated by decoupled aerobic and anaerobic processes. Biogeosciences 17:13–33. https://doi.org/10.5194/bg-17-13-2020. (PMID: 10.5194/bg-17-13-2020)
Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–317. https://doi.org/10.2307/1352954. (PMID: 10.2307/1352954)
Reay DS, Smith P, Christensen TR, James RH, Clark H (2018) Methane and global environmental change. Annu Rev Environ Resour 43:8.1–8.28. https://doi.org/10.1146/annurev-environ-102017-030154.
Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO 2 Calc: a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone), U.S. Geological Survey Open-File Report, 2010–1280, 1–17. http://pubs.usgs.gov/of/2010/1280/ . Accessed 25 February 2019.
Rosetrenter J, Maher DT, Erler DV, Murray R, Eyre BD (2018) Factors controlling seasonal CO 2 and CH 4 emissions in three tropical mangrove-dominated estuaries in Australia. Estuar Coast Shelf Sci 215:69–82. https://doi.org/10.1016/j.ecss.2018.10.003. (PMID: 10.1016/j.ecss.2018.10.003)
Sadat-Noori M, Tait D, Maher D, Holloway C, Santos I (2018) Greenhouse gases and submarine groundwater discharge in a Sydney Harbour embayment (Australia). Estuar Coast Shelf Sci 31:499–509. https://doi.org/10.1016/j.ecss.2017.05.020. (PMID: 10.1016/j.ecss.2017.05.020)
Salloto GRB, Cardoso AM, Coutinho FH, Pinto LH, Vieira RP, Chaia C, Lima JL, Albano RM, Martins OB, Clementino MM (2012) Pollution impacts on bacterioplankton diversity in a tropical urban coastal lagoon system. PLoS One 7:1–12. https://doi.org/10.1371/journal.pone.0051175. (PMID: 10.1371/journal.pone.0051175)
Samanta S, Dalai TK, Pattanaik JK, Rai SK, Mazumdar A (2015) Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: evidence of DIC generation via organic carbon degradation and carbonate dissolution. Geochem Cosmochim Acta 165:226–248. https://doi.org/10.1016/j.gca.2015.05.040. (PMID: 10.1016/j.gca.2015.05.040)
Sampaio GF (2008) Cianobactérias como parâmetros de qualidade ambiental: um estudo do Complexo Lagunar de Jacarepagua. Dissertation, Universidade do Estado do Rio de Janeiro.
Santos Neves OM, Strauch JC, Ajara C (2017) Dasymetric methods applied to Jacarepagua watershed. Bull Geod Sci 23:606–622. https://doi.org/10.1590/S1982-21702017000400040. (PMID: 10.1590/S1982-21702017000400040)
Sarma VVSS, Viswanadham R, Rao GD, Prasad VR, Kumar BSK, Naidu SA, Kumar NA, Rao DB, Sridevi T, Krishna MS, Reddy NPC, Sadhuram Y, Murty TVR (2012) Carbon dioxide emissions from Indian monsoonal estuaries. Geophys Res Lett 39:L03602. https://doi.org/10.1029/2011GL050709. (PMID: 10.1029/2011GL050709)
Sea M, Garcias-Bonet N, Saderne V, Duarte C (2018) Carbon dioxide and methane fluxes at the air–sea interface of Red Sea mangroves. Biogeosciences 15:5365–5375. https://doi.org/10.5194/bg-15-5365-2018. (PMID: 10.5194/bg-15-5365-2018)
Siegenthaler U, Stocker TF, Monnin E, Lüthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle–climate relationship during the late Pleistocene. Science 25:1313–1317. https://doi.org/10.1126/science.1120130. (PMID: 10.1126/science.1120130)
Sunda WG, Cai W-J (2012) Eutrophication induced CO 2 -acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric PCO 2 . Environ Sci Technol 46:10651–10659. https://doi.org/10.1021/es300626f. (PMID: 10.1021/es300626f)
Thomas H, Schiettecatte L, Suykens K, Kon YJM (2009) Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences 6:267–274. https://doi.org/10.5194/bg-6-267-2009. (PMID: 10.5194/bg-6-267-2009)
Upstill-Goddard RC, Barnes J (2016) Methane emissions from UK estuaries: re-evaluating the estuarine source of tropospheric methane from Europe. Mar Chem 180:14–23. https://doi.org/10.1016/j.marchem.2016.01.010. (PMID: 10.1016/j.marchem.2016.01.010)
Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJP (2000) Methane in the Southern North Sea: low salinity inputs, estuarine removal and atmospheric flux. Global Biogeochem Cy 14:1205–1217. https://doi.org/10.1029/1999GB001236. (PMID: 10.1029/1999GB001236)
Wallace YM (2005) Guidelines for estimating sewage flows for sewage infrastructure planning. Technical Report No.: EPD/TP 1/05. Environmental Protection Department. Hong Kong. https://www.epd.gov.hk/epd/sites/default/files/epd/english/environmentinhk/water/guide_ref/files/gesf.pdf Accessed 10 March 2019.
Wanninkhof R (1992) Relationship between gas exchange and wind speed over the ocean. J Geophys Res 97:7373–7382. https://doi.org/10.1029/92JC00188. (PMID: 10.1029/92JC00188)
Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215. https://doi.org/10.1016/0304-4203(74)90015-2. (PMID: 10.1016/0304-4203(74)90015-2)
Whitman WB, Bowen TI, Boone DR (1992) The methanogenic bacteria. In: Barlows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer-Verlag, New York.
Wolf-Gladrow DA, Zeebe RE, Klaas C, Körtzinger A, Dickson AG (2007) Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Mar Chem 106:287–300. https://doi.org/10.1016/j.marchem.2007.01.006. (PMID: 10.1016/j.marchem.2007.01.006)
Xu Y-Y, Pierrot D, Cai W-J (2017) CO2 SYS Ocean carbonate system computation for anoxic waters using an updated CO2SYS program. Mar Chem 195:90–93. https://doi.org/10.1016/j.marchem.2017.07.002. (PMID: 10.1016/j.marchem.2017.07.002)
Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80. https://doi.org/10.1021/je60068a029. (PMID: 10.1021/je60068a029)
Yu Z, Wang D, Li Y, Deng H, Hu B, Ye M, Zhou X, Da L, Chen Z, Xu S (2017) Carbon dioxide and methane dynamics in a human-dominated lowland coastal river network (Shanghai, China). J Geophys Res Biogeosci 122:1738–1758. https://doi.org/10.1002/2017JG003798. (PMID: 10.1002/2017JG003798)
Zhai W, Dai M, Guo X (2007) Carbonate system and CO 2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Mar Chem 107:342–356. https://doi.org/10.1016/j.marchem.2007.02.0. (PMID: 10.1016/j.marchem.2007.02.0)
Grant Information:
E- 26202.785/2016 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (BR)
Contributed Indexing:
Keywords: Carbon dioxide; Carbonate chemistry; Coastal eutrophication; Coastal lagoons; Environment pollution; Methane
Substance Nomenclature:
0 (Greenhouse Gases)
142M471B3J (Carbon Dioxide)
K50XQU1029 (Nitrous Oxide)
OP0UW79H66 (Methane)
Entry Date(s):
Date Created: 20210316 Date Completed: 20210727 Latest Revision: 20210727
Update Code:
20240104
DOI:
10.1007/s11356-021-13362-2
PMID:
33723789
Czasopismo naukowe
Increasing eutrophication of coastal waters generates disturbances in greenhouse gas (GHG) concentrations and emissions to the atmosphere that are still poorly documented, particularly in the tropics. Here, we investigated the concentrations and diffusive fluxes of carbon dioxide (CO 2 ) and methane (CH 4 ) in the urban-dominated Jacarepagua Lagoon Complex (JLC) in Southeastern Brazil. This lagoonal complex receives highly polluted freshwater and shows frequent occurrences of anoxia and hypoxia and dense phytoplankton blooms. Between 2017 and 2018, four spatial surveys were performed (dry and wet conditions), with sampling in the river waters that drain the urban watershed and in the lagoon waters with increasing salinities. Strong oxygen depletion was found in the rivers, associated with extremely high values of partial pressure of CO 2 (pCO 2 ; up to 20,417 ppmv) and CH 4 concentrations (up to 288,572 nmol L -1 ). These high GHG concentrations are attributed to organic matter degradation from untreated domestic effluents mediated by aerobic and anaerobic processes, with concomitant production of total alkalinity (TA) and dissolved inorganic carbon (DIC). In the lagoon, GHG concentrations decreased mainly due to dilution with seawater and degassing. In addition, the phytoplankton growth and CH 4 oxidation apparently consumed some CO 2 and CH 4 , respectively. TA concentrations showed a marked minimum at salinity of ~20 compared to the two freshwater and marine end members, indicating processes of re-oxidation of inorganic reduced species from the low-salinity region, such as ammonia, iron, and/or sulfides. Diffusive emissions of gases from the entire lagoon ranged from 22 to 48 mmol C m -2 d -1 for CO 2 and from 2.2 to 16.5 mmol C m -2 d -1 for CH 4 . This later value is among the highest documented in coastal waters. In terms of global warming potential (GWP) and CO 2 equivalent emissions (CO 2 -eq), the diffusive emissions of CH 4 were higher than those of CO 2 . These results highlight that highly polluted coastal ecosystems are hotspots of GHG emissions to the atmosphere, which may become increasingly significant in future global carbon budgets.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies